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ABSTRACT: A complex regional air pollution problem dominated by particulate matter (PM) and ozone (O3) needs drastic
attention since the levels of O3 and PM are not decreasing in many parts of the world. Limited evidence is currently available
regarding the association between co-exposure to PM and O3 and mortality. A multicounty time-series study was used to investigate
the associations of short-term exposure to PM1, PM2.5, PM10, and O3 with daily mortality from different causes, which was based on
data obtained from the Mortality Surveillance System managed by the Jiangsu Province Center for Disease Control and Prevention
of China and analyzed via overdispersed generalized additive models with random-effects meta-analysis. We investigated the
interactions of PM and O3 on daily mortality and calculated the mortality fractions attributable to PM and O3. Our results showed
that PM1 is more strongly associated with daily mortality than PM2.5, PM10, and O3, and percent increases in daily all-cause
nonaccidental, cardiovascular, and respiratory mortality were 1.37% (95% confidence interval (CI), 1.22−1.52%), 1.44% (95% CI,
1.25−1.63%), and 1.63% (95% CI, 1.25−2.01%), respectively, for a 10 μg/m3 increase in the 2 day average PM1 concentration. We
found multiplicative and additive interactions of short-term co-exposure to PM and O3 on daily mortality. The risk of mortality was
greatest among those with higher levels of exposure to both PM (especially PM1) and O3. Moreover, excess total and cardiovascular
mortality due to PM1 exposure is highest in populations with higher O3 exposure levels. Our results highlight the importance of the
collaborative governance of PM and O3, providing a scientific foundation for pertinent standards and regulatory interventions.
KEYWORDS: Particulate matter, Ozone, Mortality, Interaction, Excess fraction

1. INTRODUCTION

Air pollution is widely recognized as a risk factor for human
health.1 In 2019, environmental pollution caused 9 million
premature deaths, with air pollution being the primary cause.2

Increasing conclusive evidence has demonstrated the positive
associations of short-term exposure to air pollutants with all-
cause and cause-specific mortality.3−5 As research continues,
synergistic control of multiple pollutants (especially PM and
O3) is gaining widespread attention and is more effective than
single pollutant control strategies.6 In many parts of the world,
the phenomenon of PM−O3 complex pollution has gradually
come to the forefront and has become a major feature of air
pollution.7−9 Therefore, attention to the synergistic control of
PM and O3 is essential to reduce the burden of disease.

However, few studies have examined the association
between short-term co-exposure to PM and O3 on daily
mortality. Most studies only considered O3 as a confounding
factor when examining the associations of short-term exposure
to PM with adverse health outcomes. Even so, some studies
have found a stronger association between exposure to
oxidizing gases and mortality risk in areas where the PM
components have a greater capacity for oxidative stress (e.g.,
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higher excess metal content and oxidation potential)10,11 and a
synergistic effect of co-exposure to PM and O3 through
mechanisms such as neuro-immune interactions12 and the
production of inflammation.13 However, a meta-analysis on a
number of previous studies found uncertainty about how
short-term co-exposure to PM and O3 exerts a combined effect
to lead to adverse outcomes due to inconsistencies in the end
points examined, the study design, the sample size, and the way
exposure levels of pollutants are estimated (i.e., the
composition of pollutants and the particle size of pollutants).14

For example, epidemiologic studies have shown that short-
term co-exposure to PM and O3 has a modifying effect on
cardiovascular health rather than a combined effect,15,16 while
experimental studies have also shown the presence of
synergistic effects, antagonistic effects, or no overall interaction
between PM and O3.

14 Therefore, there is an urgent need to
further investigate whether there is a combined or interactive
effect of short-term co-exposure to PM and O3 on mortality
using large population-based surveys.
The present study aims to examine the association of short-

term co-exposure to PM and O3 on all-cause nonaccidental,
cardiovascular, and respiratory mortality in 4,276,989 people in
Jiangsu Province, China, during 2014−2021. We hypothesized
an interaction of short-term co-exposure to PM (especially
PM1) and O3 on daily mortality. Our findings will provide a
basis for the synergistic regulation of PM and O3 and influence
the development of relevant policies.

2. METHODS
2.1. Study Area and Population. Jiangsu Province is

located on the east coast of China with a total area of 107,200
km2. There are 13 prefecture-level cities and 96 counties/
districts (termed “counties”), and the province had a
population of 85.1 million by the end of 2021. Jiangsu
Province is also one of the most developed provinces in China.
In recent years, the health burden of severe air pollution in
Jiangsu Province has caused widespread public concern due to
rapid industrial development and urbanization. Our study
population was from the Mortality Surveillance System
managed by the Jiangsu Province Center for Disease Control
and Prevention of China. We collected information about the
cause of death, date of death, address of usual residence, and
socio-demographic characteristics for each of the 4,276,989
participants who died from nonaccidental causes in Jiangsu
Province, China, during 2014−2021, including 1,631,135
participants who died from cardiovascular system diseases
and 489,730 participants who died from respiratory system
diseases.

2.2. Outcomes. We calculated county-level, daily, all-cause
nonaccidental, cardiovascular, and respiratory mortality in
Jiangsu Province during 2014−2021. The underlying cause of
death was classified according to the 10th revision of the
International Classification of Diseases (ICD) code. All-cause
nonaccidental disease was categorized as A00-R99, including
intentional self-harm (X60-X84), which is known to be
influenced by short-term air pollution.17 Cardiovascular disease
was classified as I00−I99, and respiratory disease was classified
as J00-J98.

2.3. Exposure Assessment. We retrieved the daily high
spatial-temporal PM1,

18 PM2.5,
19 and PM10

20 exposure data for
Jiangsu Province in 2013−2021 from the China High Air
Pollutant (CHAP) data set (spatial resolution 1 km × 1 km),
available at https://weijing-rs.github.io/product.html. We also

retrieved the daily gridded O3 data for Jiangsu Province in
2013−2021 from the Tracking Air Pollution (TAP) in China
data set (spatial resolution 10 km × 10 km).21 These data are
in good agreement with the results from the ground-based
detection stations. The coefficients of determination for cross-
validation were 0.83 (PM1), 0.92 (PM2.5), 0.90 (PM10), and
0.70 (O3). We extracted the 24 h average PM1, PM2.5, and
PM10 and the maximum 8 h moving average O3 concentrations
for 96 counties in Jiangsu Province. We also extracted
temperature and humidity data for each county in Jiangsu
Province from the ERA5-Land data set.22 Figure S1 and Table
S1 show the average annual and daily levels of air pollutants,
temperature, and humidity for Jiangsu Province in 2014−2021.

2.4. Statistical Analysis. 2.4.1. Single Effects. We used a
two-stage analytic protocol widely used for multicounty time-
series studies using the R packages “mgcv” and “metafor” to
explore the associations between short-term exposure to air
pollution and motility.3,23 In the first stage, county-specific
linear associations of PM (including PM1, PM2.5, and PM10)
and O3 exposures with mortality were estimated using a
generalized additive model with quasi-Poisson regression.3,23

Due to the small number of mortality from respiratory diseases
in each county, associations were estimated in the first stage
using zero-inflated Poisson regression in order to avoid
overfitting situations.24 In our model, we tried PM and O3
exposures at different windows. We determined exposure
windows using a generalized cross-validation (GCV) score,
which was used for subset selection of regression and singular
value truncation methods as well as for best model selection.25

We also included these factors in our model: (1) the long-term
trend, or natural cubic spline functions with 7 degrees of
freedom (df) per year; (2) an indicator variable for “day of
week” to account for possible variations in a week; (3) 4 day
(lag 0−3 days) average temperatures, or natural cubic spline
functions with 6 df;26−28 (4) 4 day (lag 0−3 days) average
humidity, or natural cubic spline functions with 3 df for 4 days
of humidity;26−28 and (5) the season, including the cold season
(January−March and December) and the warm season
(April−November).
In the second stage, a random-effects meta-analysis was used

to pool the estimates of the county-specific associations. This
analysis has been widely used in multiregional epidemiological
studies, taking into account both intraregional statistical errors
and interregional variability. We reported the pooled estimates
with a 95% confidence interval (CI), which is the percent
change in mortality corresponding to every 10 μg/m3 increase
in PM and O3 concentrations.
Sensitivity analyses were performed to validate the robust-

ness of our results. We excluded the top 5% and bottom 5% of
pollutant measurement data for each county and compared
them to the results of our original model.27 We also considered
the 96 counties as a covariate in the generalized additive model
and compared the results with a two-step analysis. Addition-
ally, we performed stratified analyses by sex (male vs female),
age (≤75 years vs >75 years), and season (warm season vs cold
season) to search for susceptibility factors influencing the
associations of short-term exposure to PM and O3 with daily
mortality. In all stratified analyses, we used a generalized
additive model with zero-inflated Poisson regression in the first
stage.
Moreover, we also obtained nonlinear exposure−response

relationships for PM1, PM2.5, PM10, and O3 with mortality
using the R packages “d lnm”, “splines”, and “mvmeta” by
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replacing the linear terms for the pollutants with a natural
spline function in the first-stage model. The natural spline
function had three nodes at the 25th, 50th, and 75th
percentiles of pollutant exposure.
2.4.2. Combined Effects and Interactions of Short-Term

Exposure to PM and O3 on Daily Mortality. We grouped the
study participants based on the Air Quality Guidelines of the
World Health Organization (WHO-AQG) for O3 (maximum 8
h moving average concentrations), including a low O3
exposure group (<100 μg/m3) and a high O3 exposure
group (≥100 μg/m3), to examine the impact of O3 on the
associations between short-term PM exposure and daily
mortality. We also used the two-stage analysis described
above to aggregate county-specific estimates of the multi-
plicative interaction of PM and O3 on daily mortality.
In addition, we explored the additive interaction of short-

term exposure to PM and O3 on daily mortality. Specifically,
we grouped the participants according to the WHO-AQG for
PM10 (24 h average concentrations, 45 μg/m3) and O3 (100
μg/m3), the WHO Air Quality Interim Target 4 for PM2.5 (24
h average concentrations, 25 μg/m3) to avoid under-
representation in one group, and the WHO-AQG of PM2.5
(15 μg/m3) for PM1 due to the lack of current standards for
PM1. We examined the additive interaction between PM and
O3 on daily mortality by including each county as a covariate in
a generalized linear model with a quasi-Poisson regression.
2.4.3. Evaluation of Excess Mortality. We calculated the

excess mortality associated with short-term exposure to PM
and O3 in each county using a previously described two-stage
analytic protocol and the R packages “d lnm”, “splines”, and
“mixmeta”. Briefly, we calculated the excess daily deaths by
cumulative RR within lag 0−1 using the standard formula (1 −
exp(−βj(xjt − 0)+)) × djt for continuous exposure.

29,30 In this
formula, βj represents the log RR for an increase of 10 μg/m3

in PM and O3, respectively, defined as the county-specific best
linear unbiased prediction for county j, and djt and xjt are the
corresponding daily mortality at day t and the average PM and
O3 levels in the same day and the day prior. The term (xjt − c)+
represents the excess PM and O3 concentrations of the above
the limit c. According to previous studies,3,31 0 μg/m3 was
chosen as the limit value for PM because there is no evidence
of a threshold for the exposure−response relationship between
PM and mortality, and 100 μg/m3 was chosen as the limit
value for O3. We reported fractions of excess deaths with 95%
empirical confidence intervals (eCIs). We also grouped the
study participants according to the WHO-AQG for O3 to
calculate the excess mortality associated with short-term PM1,
PM2.5, or PM10 exposure in each county.
All analyses were performed with R software (ver. 4.2.3; R

Development Core Team). A p-value of less than 0.05 was
considered to indicate statistical significance.

3. RESULTS
3.1. Study Population. In the study, a total of 4,276,989

participants were included, of whom 2,360,573 (55.2%) were
men, 2,568,429 (60.1%) were aged 75 years or older, and
2,646,558 (61.9%) died during the warm season. A total of
1,631,135 study participants died of cardiovascular disease, of
whom 811,287 (49.7%) were men, 1,177,471 (72.2%) were
aged 75 years or older, and 973,653 (59.7%) died during the
warm season. A total of 489,730 study participants died from
respiratory diseases in this study, of whom 278,998 (57.0%)
were men, 399,320 (81.5%) were aged 75 years or older, and

272,772 (55.7%) died during the warm season (Table 1). The
total number of deaths and the average daily number of deaths

for each county are shown in Table S2. The change in the
number of daily deaths over time for the province in 2014−
2021 is shown in Figure S2.

3.2. Associations of PM and O3 with Daily Mortality.
The associations between air pollution exposure levels and
daily all-cause mortality for different lag days of PM and O3,
respectively, showed that a 2 day average (the average exposure
on the mortality day and the day prior (lag 0−1 days)) had the
smallest mean generalized cross-validation score compared to
other exposure windows. The association of PM and O3 with
daily all-cause mortality was stronger at this time (lag 0−1
days) (Table S3). The 4 day average temperature (including
the temperature on the mortality day and the 3 days prior (lag
0−3 days)) was found to have produced the lower mean
generalized cross-validation scores and was associated more
strongly with daily all-cause deaths (Table S4). Based on the
above analysis and literature findings,3,4 a 2 day average
exposure to pollutants and a 4 day average temperature were
used for subsequent analyses.
Finally, we found significant positive associations of PM1,

PM2.5, PM10, and O3 with daily all-cause, cardiovascular, and
respiratory mortality (Table 2). At the provincial level, we
observed that a per 10 μg/m3 increase in PM1 was associated
with 1.37% (95% CI, 1.22−1.52%) in a pooled estimate of all-
cause mortality, 1.44% (95% CI, 1.25−1.63%) in a pooled
estimate of cardiovascular mortality, and 1.63% (95% CI,
1.25−2.01%) in a pooled estimate of respiratory mortality. We
also observed that the associations of PM1, PM2.5, and PM10
with daily mortality decreased with increasing particle size.
Furthermore, the results suggest that a per 10 μg/m3 increase
in O3 was associated with 0.80% (95% CI, 0.73−0.87%) in a

Table 1. Descriptive Characteristics of the Participants in
This Studya

variables

all-cause mortality
(n = 4,276,989)

(%)

cardiovascular
mortality

(n = 1,631,135)
(%)

respiratory
mortality

(n = 489,730)
(%)

Sex
male 2,360,573 (55.2) 811,287 (49.7) 278,998 (57.0)
female 1,916,416 (44.8) 819,848 (50.3) 210,732 (43.0)

Age (Year)
0−75 1,708,560 (39.9) 453,664 (27.8) 90,410 (18.5)
>75 2,568,429 (60.1) 1,177,471 (72.2) 399,320 (81.5)

Marital
unmarried 156,732 (3.7) 40,291 (2.5) 14,273 (2.9)
married 2,712,315 (63.4) 953,038 (58.4) 268,226 (54.8)
divorced 44,105 (1.0) 14,475 (0.9) 2974 (0.6)
widowed 1,348,032 (31.5) 617,565 (37.9) 202,867 (41.4)
unspecified 15,805 (0.4) 5766 (0.3) 1390 (0.3)

Education
junior high
school and
below

3,963,749 (92.7) 1,535,982 (94.2) 465,720 (95.1)

high school
and above

313,240 (7.3) 95,153 (5.7) 24,010 (4.8)

Season
warm 2,646,558 (61.9) 973,653 (59.7) 272,772 (55.7)
cold 1,630,431 (38.1) 657,482 (40.3) 216,958 (44.3)
aData are presented as the absolute number (percentages) for the
categorical variables.
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pooled estimate of all-cause mortality, 0.85% (95% CI, 0.75−
0.96%) in a pooled estimate of cardiovascular mortality, and

1.15% (95% CI, 0.94−1.36%) in a pooled estimate of
respiratory mortality.
The exposure−response relationships of PM and O3 with

daily mortality demonstrated a gradual increase in mortality
with an increasing level of exposure to the pollutants. For PM,
the slope of the curve is steeper at lower levels. Even in
populations exposed to lower levels of PM pollution than the
WHO standard, there were still detectable positive associations
with mortality. For O3, the daily mortality showed a significant
increase only at concentrations above 50 μg/m3 (Figures 1, 2,
and 3).
Stratified analysis showed that there were association

modifiers for sex, age, and season in the association of PM
and O3 with daily mortality. Participants aged over 75 years
and women were more susceptible to air pollution. The
association of air pollution is stronger in the warm season
(April−November) (Tables S7−S9).
We also conducted a sensitivity analysis by removing the top

5% and bottom 5% of pollutant exposure concentrations for
each county. The results are consistent with those described
previously, suggesting a significant association of PM1, PM2.5,
PM10, and O3 with daily mortality (Table S5). In another

Table 2. Percentage Change in All-Cause Mortality,
Cardiovascular Mortality, and Respiratory Mortality per 10
μg/m3 Increase in the 2 Day Moving Average
Concentrations of PM1, PM2.5, PM10, and O3 at the
Provincial Level

pooled estimate, % (95% CI)a

pollutants all-cause mortality
cardiovascular
mortality

respiratory
mortality

PM1 1.37 (1.22, 1.52) 1.44 (1.25, 1.63) 1.63 (1.25, 2.01)
PM2.5 0.60 (0.52, 0.67) 0.63 (0.53, 0.72) 0.70 (0.51, 0.89)
PM10 0.36 (0.31, 0.41) 0.37 (0.30, 0.43) 0.50 (0.38, 0.62)
O3 0.80 (0.73, 0.87) 0.85 (0.75, 0.96) 1.15 (0.94, 1.36)

aPooled estimates represent the percentage changes in daily all-cause,
cardiovascular, and respiratory mortality per 10 μg/m3 increase in the
concentrations of particulate matter (PM) with an aerodynamic
diameter of 1 μm or less (PM1), 2.5 μm or less (PM2.5), and 10 μm or
less (PM10) and ozone (O3).

Figure 1. Pooled concentration−response curves for all-cause mortality. Shown are the pooled concentration−response curves for the associations
of the 2 day moving average concentrations of PM1, PM2.5, PM10, and O3 with daily all-cause mortality. The y-axis displays the percentage difference
in mortality from the pooled mean effect. The dashed lines indicate the air quality guidelines or standards for particulate matter (PM1, PM2.5, or
PM10) or ozone (8 h average concentrations) according to the World Health Organization (WHO) Air Quality Guidelines as well as four WHO
Interim Targets (IT-1, IT-2, IT-3, and IT-4).
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sensitivity analysis, which incorporated both the daily mortality
and pollutant levels for each county into a generalized additive
model with quasi-Poisson regression and treated county names
as covariates, similar associations were found (Table S6).

3.3. Combined and Interactive Effects of PM and O3
on Daily Mortality. We grouped the study participants
according to O3 exposure levels, and our results showed that
those with high O3 exposure levels had greater susceptibility to
PM1, PM2.5, and PM10. There was a significant multiplicative
interaction between short-term exposure to PM (PM1, PM2.5,
and PM10) and O3 on daily all-cause, cardiovascular, and
respiratory mortality (Table 3). We also found a significant
additive interaction of PM (PM1 and PM2.5) and O3 on daily
all-cause, cardiovascular, and respiratory mortality. The
combined effect showed that those with high exposure to
both PM and O3 had a significantly increased risk of death
compared to those with low exposure to both (Figures S3−
S5).

3.4. Excess Mortality Attributable to PM and O3. We
calculated the excess mortality fraction (%) attributable to
short-term exposure to PM and O3. The results showed that
PM1 exposure was associated with an increased excess
mortality fraction of all-cause, cardiovascular, and respiratory

disease by 3.76% (95% eCI, 3.65−3.86%), 4.06% (95% eCI,
3.93−4.18%), and 4.39% (95% eCI, 4.01−4.72%), respectively.
Excess mortality from PM1 was higher than that from PM2.5
and PM10 (Table 4). Moreover, O3 exposure was associated
with an increased excess mortality for all-cause, cardiovascular,
and respiratory disease by 6.40% (95% eCI, 6.19−6.59%),
6.71% (95% eCI, 6.44−6.97%), and 7.89% (95% eCI, 7.36−
8.35%), respectively. Similarly, our stratified analysis by O3
exposure levels showed that, overall, excess total and
cardiovascular mortality due to PM1 and PM2.5 was higher in
the highly O3-exposed population than both the low-exposed
population and the whole population, though this trend was
not significant for excess mortality due to PM10 and excess
respiratory mortality (Table 4).

4. DISCUSSION
Our two-stage, multicounty, time-series analysis of 4,276,989
individuals provides new ideas for the synergistic control of
multiple air pollutants. Our results indicated that short-term
exposure to PM1, PM2.5, PM10, and O3 all increase the risks of
daily all-cause, cardiovascular, and respiratory mortality, with
associations modified by sex, age, and season. In addition, we
found an interaction between PM and O3 short-term exposure

Figure 2. Pooled concentration−response curves for cardiovascular mortality. Shown are the pooled concentration−response curves for the
associations of the 2 day moving average concentrations of PM1, PM2.5, PM10, and O3 with daily cardiovascular mortality. The y-axis displays the
percentage difference in mortality from the pooled mean effect. The dashed lines indicate the air quality guidelines or standards for particulate
matter (PM1, PM2.5, or PM10) or ozone (8 h average concentrations) according to the World Health Organization (WHO) Air Quality Guidelines
as well as four WHO Interim Targets (IT-1, IT-2, IT-3, and IT-4).
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on the daily mortality risk, implying that those with higher
short-term exposure levels of both PM and O3 had the highest
risk of mortality. The excess total and cardiovascular mortality
due to PM1 and PM2.5 was higher in the highly exposed O3
population than in the low-exposed population and the
population as a whole. This study will provide new insights
into the potential mechanisms and synergistic regulatory
measures for co-exposure to PM- and O3-induced mortality
and have implications for related policies and standards.
This study found that with a 10 μg/m3 increase in PM1,

PM2.5, and PM10, the risk of all-cause mortality increased by
1.37%, 0.60%, and 0.36%, respectively. Similar associations
were found between PM1, PM2.5, and PM10 exposure and
cardiovascular and respiratory mortality. In line with most
previous studies, some studies have found a positive
association between short-term exposure to PM1, PM2.5, and
PM10 and daily all-cause mortality, without significant
thresholds.3,4 Additionally, our study also found a stronger
association between pollutants and daily respiratory-related
mortality and between the risk of daily mortality and PM1,
which corresponds to the results of other studies.4,32−34

However, an epidemiological study based in Barcelo,́ Spain,
reported inconsistent results,35 and the association of

pollutants with daily mortality varies from study to study.
The inconsistency of these results may be due on one hand to
inconsistencies in the sources and components and levels of
PM in different regions36 and on the other hand to differences
in statistical methods or in the setting of parameterization for
the same statistical method.37 Furthermore, we found a 0.80%
(95% CI, 0.73−0.87%) increase in all-cause mortality per 10
μg/m3 increase in O3. This finding is supported by the most
recent meta-analysis, which found a significant positive
association between short-term exposure to O3 and the risk
of all-cause mortality (RR, 1.0043; 95% CI, 1.0034−1.0052).5
In addition, some studies have found an association between
O3 exposure and death from respiratory disease and
cardiovascular disease.38,39 These findings all suggest that O3
is an important contributor to the increased risk of death.
The results of the stratified analysis indicated that short-term

exposures to PM and O3 had a stronger association with daily
all-cause and cardiovascular mortality during the warm season,
whereas the associations did not differ significantly between
the warm and cold seasons for respiratory diseases. This
finding is still supported by a number of studies and may be
explained by the fact that warmer seasons increase the
opportunity for people to travel and thus increase outdoor

Figure 3. Pooled concentration−response curves for respiratory mortality. Shown are the pooled concentration−response curves for the
associations of the 2 day moving average concentrations of PM1, PM2.5, PM10, and O3 with daily respiratory mortality. The y-axis displays the
percentage difference in mortality from the pooled mean effect. The dashed lines indicate the air quality guidelines or standards for particulate
matter (PM1, PM2.5, or PM10) or ozone (8 h average concentrations) according to the World Health Organization (WHO) Air Quality Guidelines
as well as four WHO Interim Targets (IT-1, IT-2, IT-3, and IT-4).
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exposure levels.40 We also found that women and the elderly
may be more sensitive to PM and O3 than men and younger
people, which is in line with some previous studies.32,41,42 One
possible reason is that women have a higher airway
responsiveness and have a greater physiological response to
air pollution.43 The higher prevalence of cardiovascular disease
in the elderly may explain their greater susceptibility to air
pollution. There are many other factors that may influence the

associations between air pollution and mortality, such as
education and marriage, which is out of the scope of this study
and requires further investigation.
Our study found a multiplicative interaction of PM

(including PM1, PM2.5, and PM10) and O3 on all-cause,
cardiovascular, and respiratory mortality, with the strongest
interaction between PM1 and O3. Most previous studies have
either examined the effects of the two pollutants individually or
have used dual-pollutant models to explore the modifying
effects of O3 on the association between PM and daily
mortality. Our study is supported by a number of previous
studies. A study based on a Moscow population found that the
relationship between PM10 and mortality was significantly
modified by O3 levels. On days when O3 concentrations
exceeded the 90th percentile, the risk of all-cause mortality was
tripled by PM10.

44 Another study also found an interaction
between short-term PM and O3 exposure on daily mortality.

45

A similar association was found in several cross-sectional
studies and prospective studies.46,47 In an animal study, it was
observed that treatment with a TRPV1 antagonist reduced
both IgE and OVA-IgE levels when co-exposed to PM2.5 and
O3. This finding suggests that neuro-immune interactions
involving PM2.5 and O3 contribute to the exacerbation of
immunoglobulin levels.12

Although the mechanisms involved are not fully elucidated,
there are currently some possible underlying mechanisms that
could be used to suggest that combined exposure to O3 and
PM may have adverse effects. First, a previous study found that
participants had a higher susceptibility to death from O3 in
areas with elevated PM2.5 oxidation potential and abundant
transition metals/sulfur.48 Second, PM and O3 have been
found to act synergistically to generate a sustained production
of reactive HO radicals, which cause airway inflammation and
other respiratory diseases.13 In addition, PM2.5 and O3 co-
exposure may be involved in the development of adverse
outcomes through neuro-immune interactions.12 Finally,
smaller PM sizes (such as PM1) may be more likely to cause
adverse health effects because smaller PM particles are more
likely to enter the circulatory system through the respiratory

Table 3. Multiplicative Interaction between Particulate Matter and Ozone on All-Cause, Cardiovascular, and Respiratory
Mortality at the Provincial Levela

PM1 PM2.5 PM10

variables
pooled estimate (%)

(95% CI)
multiplicative scale

(95% CI)
pooled estimate (%)

(95% CI)
multiplicative scale

(95% CI)
pooled estimate (%)

(95% CI)
multiplicative scale

(95% CI)

All-Cause Mortality
high O3
exposure

2.08 (1.80, 2.36) 0.14 (0.13, 0.16) 1.00 (0.85, 1.14) 0.07 (0.07, 0.08) 0.31 (0.24, 0.39) 0.04 (0.04, 0.05)

low O3
exposure

0.77 (0.63, 0.91) 0.36 (0.29, 0.43) 0.23 (0.19, 0.28)

Cardiovascular Mortality
high O3
exposure

2.62 (2.16, 3.08) 0.16 (0.14, 0.17) 1.28 (1.05, 1.51) 0.08 (0.07, 0.09) 0.38 (0.27, 0.49) 0.04 (0.04, 0.05)

low O3
exposure

0.76 (0.56, 0.95) 0.36 (0.26, 0.45) 0.23 (0.16, 0.30)

Respiratory Mortality
high O3
exposure

1.38 (0.59, 2.16) 0.18 (0.14, 0.21) 0.64 (0.21, 1.07) 0.06 (0.05, 0.07) 0.24 (0.01, 0.48) 0.09 (0.07, 0.11)

low O3
exposure

1.03 (0.62, 1.43) 0.48 (0.28, 0.68) 0.34 (0.20, 0.48)

aPooled estimates represent the percentage changes in daily all-cause, cardiovascular, and respiratory mortality per 10 μg/m3 increase in the
concentrations of particulate matter (PM) with an aerodynamic diameter of 1 μm or less (PM1), 2.5 μm or less (PM2.5), and 10 μm or less (PM10)
stratified by ozone (O3). Multiplicative scales represent the percentage changes in the interactions of PM and O3 on daily all-cause, cardiovascular,
and respiratory mortality.

Table 4. Excess Mortality Fraction (%) Attributable to
Short-Term Exposure to PM1, PM2.5, PM10 and O3

a

excess fraction (%) (95% eCI)

pollutants all-cause mortality
cardiovascular
mortality

respiratory
mortality

O3 6.40 (6.19, 6.59) 6.71 (6.44, 6.97) 7.89 (7.36, 8.35)
PM1

high O3
exposure

4.87 (4.62, 5.11) 6.42 (6.06, 6.74) 3.91 (3.38, 4.36)

low O3
exposure

2.40 (2.35, 2.45) 2.45 (2.37, 2.53) 2.94 (2.65, 3.21)

all 3.76 (3.65, 3.86) 4.06 (3.93, 4.18) 4.39 (4.01, 4.72)
PM2.5

high O3
exposure

3.84 (3.60, 4.05) 5.26 (4.93, 5.54) 2.92 (2.50, 3.30)

low O3
exposure

2.09 (2.04, 2.14) 2.16 (2.08, 2.24) 2.66 (2.32, 2.94)

all 2.89 (2.82, 2.96) 3.17 (3.10, 3.24) 3.39 (3.05, 3.69)
PM10

high O3
exposure

2.63 (2.42, 2.82) 3.44 (3.17, 3.68) 1.96 (1.66, 2.24)

low O3
exposure

2.31 (2.25, 2.35) 2.32 (2.22, 2.40) 3.08 (2.75, 3.37)

all 3.04 (2.93, 3.14) 3.23 (3.10, 3.34) 4.11 (3.73, 4.43)
aAbbreviations: PM1, particulate matter (PM) with an aerodynamic
diameter of 1 μm or less; PM2.5, PM with an aerodynamic diameter of
2.5 μm or less; PM10, PM with an aerodynamic diameter of 10 μm or
less; and O3, ozone. The high O3 exposure group includes the
participants with O3 exposure levels ≥100 μg/m3. The low O3
exposure group includes the participants with O3 exposure levels
<100 μg/m3.
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tract have a larger surface area to adsorb more harmful
pollutants.49,50

Our study has the following strengths. First, to the best of
our knowledge, our study is the largest and most recent to
examine the interaction of short-term co-exposure to PM and
O3 on daily mortality, which will provide a theoretical basis for
the combined regulation of both. Furthermore, we explored
the susceptibility factors that influence the associations of PM1,
PM2.5, PM10, and O3 with daily mortality, which will facilitate
the provision of individualized protective measures for
susceptible populations.
This study also has some limitations. First, exposure

misclassification due to our inability to obtain individual
exposure data by collecting exposure levels at the county level
is an acknowledged inherent limitation of environmental
epidemiological studies. Second, the number of deaths from
respiratory disease across counties in our study was small, and
although we used zero-inflated Poisson regression to improve
on this weakness,24 we still could find that the results of
subgroup analyses were not very robust. Further, although we
controlled for time-varying weather conditions, there were
many confounding factors (age, sex, lifestyle, etc.) that could
not be controlled, which would lead to imprecise estimates.
For this reason, we conducted stratified analyses by sex, age,
and season to further examine the modifying effect of these
factors on the associations. Moreover, based on previous
studies,30,41 we calculated the excess mortality fraction
attributable to short-term exposure to PM1, PM2.5, and PM10
by assuming a linear relationship between PM and mortality.
However, it is undeniable that this may have led to some
misestimation of the excess mortality fraction. The limitations
of this indicator should be recognized in practical applications.
Finally, although we included all deaths in the Jiangsu
mortality surveillance system for the period of 2014−2021,
Jiangsu is only one province in China, which limits the
generalizability and extrapolation of our results. In the future,
accurate exposure measurements and a nationally representa-
tive study population will increase the accuracy of such studies
and make the results more instructive.
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Combined exposure of multiple heavy 
metals had an adverse effect on lung 
function. 

• Ce and Cu in blood had adverse effects 
on lung function. 

• Fe in blood was a protective factor for 
lung function.  

A R T I C L E  I N F O   
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A B S T R A C T   

The content of single heavy metal in blood is associated with lung function decline, but there is little evidence on 
the joint effect of multiple heavy metals on lung function. To explore whether heavy metal mixture exposure is 
associated with lung function reduction among young adults. The study based on a cohort of 518 students 
recruited from a college in Shandong, China. We measured their lung function and blood heavy metal concen-
trations. The BKMR model was used to analyse the association between blood heavy metals mixture levels and 
lung function, and to identify the critical single heavy metal which contributes most to joint effects. As the 
sensitivity analysis, we used quantile g-computation model and GLM to explore the joint effect and independent 
effects of heavy metals. Our findings revealed a significant reduction of FVC and FEV1 levels after exposure to 
heavy metals mixture. An IQR increase in Cu was associated with a 0.079 L and 0.083 L decrease in FEV1 and 
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FVC, respectively. And an IQR increase in Fe was associated with 0.036 L higher FEV1 and 0.033 L higher FVC. 
For adults, reducing blood heavy metals concentration might be an effective intervention to protect lung 
function.   

1. Introduction 

Heavy metals are defined as metals with relatively high densities, 
atomic numbers or atomic weights [1]. Due to the rapidly increasing 
usages in recent years, the pollution caused by heavy metals to the 
environment has become a great concern [2]. For example, the con-
centrations of Cadmium(Cd), Nickel(Ni), and Chromium(Cr) in 2012 
were 10, 13 and 16 times higher than those in 1941 in Spain, respec-
tively [3]. The concentration of heavy metals in human body could 
accumulate through a variety of ways like air, foods, drinking water, and 
skin contact [4,5]. Exposure to heavy metals has been shown to be 
adversely associated with a series of diseases including cardiovascular 
diseases [6], reproductive dysfunction [7] and neurological diseases [8]. 
Mechanism studies have found that heavy metals exposure could in-
crease oxidative stress and inflammatory reaction, which suggest that 
heavy metals might also cause damage to the respiratory system [9]. 
Lung function decline is a preclinical symptom of many respiratory 
diseases [10]. However, evidence on heavy metal exposure and lung 
function is scarce, especially in low- and middle-income developing 
countries. 

A study among children aged 6–17 years across the US has found a 
negative association between blood manganese (Mn) and forced vital 
capacity (FVC), as well as a negative correlation between urine Pb and 
forced expiratory flow at 25–75%(FEF25–75) [11]. Similar negative as-
sociations have also been found in other three studies between cadmium 
(Cd) [12], Zn [13], and copper (Cu) [14] and lung function. However, 
these studies only considered the independent effect of single heavy 
metal on lung function, which did not account for the joint effects of 
heavy metal mixtures.A cross-sectional study among 186 welders has 
found a negative joint effect of urine metal mixtures on lung function 
(FVC, FEV1, and PEF) [15]. Similar evidence was found in a 
cross-sectional study among American Indian adults from Strong Heart 
Study [16]. However, urine metal concentrations used in these studies to 
assess the heavy metal exposure could be highly affected by individual 
metabolic abilities compared to the blood metal concentrations. Previ-
ous studies have found that blood metal concentrations are closely 
associated with respiratory diseases [11,17]. Additionally, no studies 
have been conducted in Chinese general population who lived in heavy 
metals highly polluted areas [18,19]. 

We conducted a longitudinal cohort to analyze the association be-
tween metal mixtures and lung function in Shandong, China. We aimed 
to investigate the individual and joint associations between heavy 
metals in blood and lung function, and to identify the critical metals that 
contribute the association. 

2. Method 

2.1. Study design and participants 

Participants in the study were from the Chinese Undergraduates 
Cohort (CUC), a prospective cohort which was described in detail in 
previous studies [20,21]. A total of 518 participants were recruited in 
2019. The inclusion criteria are: (1) Enrolled in Binzhou Medical Uni-
versity in 2019; (2) No hearing, vision or language disability; (3) Will 
leave to study somewhere else after living in school for a year and a half. 
We collected their blood samples for further test of heavy metal con-
centrations, interviewed all participants to complete a questionnaire and 
examined lung function in baseline survey (September 3 to October 17, 
2019). Among all participants, 504 of them finished the follow-up study 
during May 25 and 26, 2021. The study obtained written informed 

consent from all participants. The study was approved by the Binzhou 
Medical University ethics committee (NO.2019075). 

2.2. Lung function test 

FVC and forced expiratory volume in 1 s (FEV1) were selected as 
indicators of lung function. All the lung function tests were conducted 
using Gest HI-101 spirometer (Chest, Tokyo, Japan) with a standard 
procedure according to European Respiratory Society specifications 
[22]. All spirometers were calibrated before the test. Professionally 
trained investigators would guide the participant during the test process. 
All participants were asked to rest few minutes before testing to elimi-
nate potential effect of short-time movement on lung function results, 
and then each participant completed 3 projects including Slow Vital 
Capacity (SVC), FVC, and Maximum Ventilatory Volume (MVV), 
respectively. And all participants were asked to take a rest period of ≥ 1 
min between two projects to achieve the best possible result [22]. To 
ensure the accuracy, we checked the spirometer’s diagnosis of results 
and performed second lung function tests when results suggested pul-
monary dysfunction after 20 days of the first test. The same process 
continued until the third test which was 15 days after the second test. 
The best result of the three measurements was used to represent the lung 
function status for participants who were still diagnosed with pulmo-
nary dysfunction at the third time. To avoid the influence of temperature 
on lung function during the measurement, we used air conditioning to 
control the temperature in the test room. The flow-chart of the lung 
function test is shown in Fig. 1. 

2.3. Blood sample preparation and metal analysis 

Fasting blood sample (approximately 5 mL) was collected before 
8:00 a.m. from each participant at both baseline (September 5, 2019) 
and follow-up (May 27, 2021). Blood samples were centrifuged and 
divided at room temperature and stored at − 80 ◦C prior to the metal 
analysis. 

A direct dilution method was used for the metal measurement. 
0.35ml of blood sample were transferred to a quartz tube and combined 
with 0.40 mL of nitric acid. After predigestion at room temperature for 
two hours, we placed the quartz tubes in a microwave digestion system 
(Ultra WAVE, Milestone Co., Italy) for 50 min, and then added 0.1 mL 
indium (2 ng/mL) as an internal standard element. The concentrations 
of elements were measured by an inductively coupled plasma-mass 
spectrometer (ICP-MS, ELAN DRC II, PerkinElmer, USA). There are 
three main approaches to address the problem when measurements are 
below the limit of detection (LOD) [23]: A) Removal of the participants 
whose blood heavy metal levels are below the LOD; B) Replaced it with a 
random number below the LOD; C) Replaced it with the LOD divided by 
the square root of 2. Excluding participants would result in missing 
sample sizes, and using random numbers would increase the heteroge-
neity. So, we chose to replace measurements below the detection limit 
with the detection limit divided by the square root of 2 [24]. 

2.4. Covariates 

An electronic questionnaire would be sent to participants by the 
investigator. If there was any omission or logical error, the investigator 
would immediately supplement data and provide feedback. Covariates 
include the demographic information such as sex (male, female, cate-
gorical), age (continuous), smoking (never smoking, past smoking, and 
current smoking, categorical) and alcohol consumption (current 

M. Wang et al.                                                                                                                                                                                                                                  



Journal of Hazardous Materials 459 (2023) 132064

3

drinking: participants who drank more than once a month on average 
during the last 12 months; past drinking; never drinking, categorical); 
and the socioeconomic factor: annual household income (≤20,000 USD/ 
year, ＞20,000 USD/year, categorical). The body mass index (BMI, kg/ 
m2) was calculated by dividing weight in kilograms by the square of 
height in meters, and controlled as a continuous variable. 

2.5. Statistical analysis 

We described the demographic characteristics of all participants, 
where continuous variables were presented as mean ± standard devia-
tion, while the categorical variables were presented as counts (per-
centage). Wilcoxon test and Chi-square test were performed for the 
distribution non-normal continuous and categorical variables between 
baseline and the follow-up phase. 

We included all heavy metals and screened them using a Bayesian 
kernel machine regression (BKMR) model based on baseline stage. 
Firstly, we excluded heavy metals that below the detection limit of the 
spectrometer, the concentration of these heavy metals were lower than 
the detection accuracy of the spectrometer which might result in inac-
curate measurement. Then, we excluded heavy metals with inconsistent 
association (changed from positive association to negative association) 
when other heavy metals were controlled at different percentile. Finally, 
six heavy metals were included in this study, with Ce (Cerium, 
density:6.77 g/cm3), Ag (Argentum, density: 10.49 g/cm3), Cu (Cup-
rum, density: 8.96 g/cm3), Sn (Stannum, density: 7.28 g/cm3), Cr 
(Chromium, density: 7.19 g/cm3) and Fe (Ferrum, density: 7.86 g/cm3) 
as the main heavy metals (Fig. S1.). 

BKMR was used to model the association between heavy metals and 
FVC or FEV1 [25,26]. The BKMR model allows for identifying not only 
independent effects but also the joint effects via a kernel function. Before 
modeling, the exposure levels were normalized. In short, we subtracted 
the mean of the concentration matrix and divided by the standard de-
viation of the concentration matrix. We created the BKMR model based 
on the following equation for heavy metals determined in blood 
samples: 

Yi = h(Z)+ βzi + ei  

Where Yi was the outcome of lung function (i.e., FVC or FEV1); h () was 
the function of fitting exposure and Yi, which considered both non-linear 
relationships and joint effect among mixed exposures; Z was the con-
centrations of heavy metals; zi was a vector of covariates, including sex, 
age, BMI, income, smoking and drinking; ei was a random error term. A 
“gaussian” link function was used for the BKMR model. The Markov 

chain Monte Carlo algorithm of the BKMR model realized 30,000 iter-
ations to ensure the stability of the model results. 

As sensitivity analysis, first, we used quantile g-computation 
(qgcomp) to estimate the association between heavy metals mixture and 
lung function. It estimates the joint effect of increasing all heavy metals 
within the mixture by a single quantile. Meanwhile, qgcomp also could 
obtain the weights of each heavy metal in mixture. Then, we applied 
Generalized Linear Model (GLM) to evaluate the association between 
every single metal in heavy metal mixtures and lung function indexes, 
which was modeled separately between baseline and follow-up. To 
avoid the difference caused by the distinct order of the magnitude for 
each heavy metal, we used inter quartile range (IQR) to evaluate the 
changed effects estimates between pollutants and lung function. 

All data analyzed were implemented using R (version 4.1.1) and 
p < 0.05 was considered statistically significant unless otherwise 
indicated. 

3. Result 

3.1. Characteristics of the study population 

Table 1 shows the demographic characteristics and lung function test 
results of all participants. Our baseline set included 518 participants, 

Fig. 1. Flow-chart of study population selection and lung function test.  

Table 1 
Demographic characteristics and lung function outcomes of all participants.  

Characteristics Baseline (N = 518) Follow-up (N = 504) P-value 

Sex    0.86 
Male 162(31.27%) 154(30.56%)   
Female 356(68.73%) 350(69.44%)   

Age (years) 18.12 ± 0.62 20.20 ± 0.67  < 0.01 
BMI (kg/m2) 21.86 ± 3.64 22.32 ± 5.08  0.09 
Income (USD / year) 0.49 
≤ 20,000 469(90.54%) 446(88.49%)   
＞20,000 49(9.46%) 58(11.51%)   

Smoking    0.86 
Never smoking 514(99.23%) 499(99.01%)   
Past smoking 1(0.19%) 1(0.20%)   
Current smoking 3(0.58%) 4(0.79%)   

Drinking    0.67 
Never drinking 500(96.53%) 492(97.62%)   
Past drinking 1(0.19%) 1(0.20%)   
Current drinking 17(3.28%) 11(2.18%)   

Lung function index  
FVC (L) 2.72 ± 0.81 3.30 ± 0.72  < 0.01 
FEV1 (L) 2.65 ± 0.77 3.08 ± 0.63  < 0.01  
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among whom 356(68.73%) were female. In the follow-up set there were 
69.44% female among 504 participants. The average age ( ± SD) of the 
baseline was 18.12 ± 0.62 years old. The average ( ± SD) BMI at base-
line and follow-up were 21.86 ± 3.64 and 22.32 ± 5.08 kg/m2, 
respectively. The vast majority of the participants had never been 
smoking or drinking. The baseline and follow-up phase exhibited no 
statistical differences in BMI, annual income, nor in smoking and 
drinking status. We controlled age in further analysis to eliminate the 
potential confounding effect. Fig. S2. shows the geographical distribu-
tion of participants before baseline survey. 

3.2. Blood metal levels 

Among 6 heavy metals in this study, the top three most abundant 
heavy metals were Fe, Cu and Cr on average, and the concentration of 
other three heavy metals are relatively low. In the baseline survey, the 
average concentrations of Fe, Cu and Cr in the blood of participants 
reached 495585.97 ng/mL, 838.63 ng/mL and 3.00 ng/mL. The con-
centrations of these three heavy metals decreased at different levels 
during follow up, among which iron and copper decreased significantly. 
In addition, Ag also decreased significantly, while Sn and Ce increased 
significantly. The concentration of heavy metals in baseline and follow 
up was list in Table S1. 

3.3. Joint effects of the mixtures of metals on FVC and FEV1 

The joint effects of heavy metal exposure on FVC and FEV1 (estimates 
and 95% credible intervals, CIs) are summarized in Fig. 2. The graph 
represents the estimated changes in lung function associated with 
percentile changes of heavy metal mixtures, with the 50th percentile of 
multiple exposure as the reference. From the results of BKMR, as the 
concentration of heavy metals increases, the joint effect of heavy metals 
will reduce FVC and FEV1. The results indicated a negative association 

between the whole metal mixture and lung function in baseline and 
follow-up. The strongest negative association was found in participants 
whose heavy metal mixtures concentrations were at high percentiles (i. 
e., ＞50th). 

3.4. Critical metals and independent effect 

To further explore the contribution of critical heavy metal to the joint 
effects, this study analyzed the independent effect of single metal on FVC 
and FEV1. Fig. 3. shows the effect of these metals on lung function in-
dexes when the concentration of other metals was fixed at the 75th, 50th 
or 25th percentile. We found that Cu and Ce would significantly defect 
lung function in the baseline, and the results of follow-up were similar. 
For instance, FVC were estimated to decrease − 0.05 L (95%CI: − 0.10, 
0.006), − 0.06 L (95%CI: − 0.11, − 0.02), − 0.08 L (95%CI: − 0.14, 
− 0.03) when Cu change from its 25th percentile to 50th percentile when 
all of the other heavy metals fixed at the 25th, 50th, 75th percentile 
respectively in baseline. In addition to the above results, we also found 
that Fe could significantly improve lung function when other heavy 
metals were controlled at 25th at the follow-up stage. Meanwhile, we 
also found that when the percentile of other heavy metals changed 
(25th, 50th, 75th), the effect of Ce on FVC or FEV1 basically remain 
stable. But the effect of Fe and Cu were different when other heavy 
metals fixed at different percentile, indicating the potential interaction 
between Fe, Cu and other heavy metals. Posterior inclusion probabilities 
(PIPs) of all heavy metals were shown in Table S2. PIP of Cu, Ce and Fe 
were relatively high. 

3.5. Sensitivity analyses 

From the qgcomp model, every IQR increase of heavy metals mixture 
at baseline and follow-up resulted in a different degree of reduction in 
lung function. Fig. 4. shows the reduction of each indicator at baseline 

Fig. 2. Joint effects of heavy metals on FVC and FEV1 determined by the BKMR model with the data from different phase.  
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and follow-up stage. The weights for each pollutant were shown in 
Fig. S3. Table S3 shows the results of GLM in sensitivity analyses. In 
baseline stage, for every IQR increase of Cu concentration, FVC 
decreased by 0.1206 (− 0.2067, − 0.0344) L and FEV1 decreased by 
0.1033 (− 0.1895, − 0.0344) L, significantly. Ce tended to have a 
reduction effects on FVC (− 0.0072 L, 95CI: − 0.0227, 0.0083) and FEV1 
(− 0.0054 L, 95CI: − 0.0200, 0.0093). Fe had a certain insignificant 
protective effect (FVC: 0.2206 L, 95CI: − 0.6619, 0.9928; FEV1: 
0.2206 L, 95CI: − 0.4413, 0.9928). At the follow-up, the significant as-
sociation between Ce, Cu and Fe and lung function showed a consistent 
trend with the results of BKMR (Fig. 3.). 

4. Discussion 

We conducted a longitudinal cohort to analyze the association be-
tween metal mixtures and lung function in Shandong, China. Our study 
found that the combined exposure of multiple heavy metals had an 
adverse effect on lung function. We identified key metals, e.g. Cu and Ce, 
which had adverse effects on lung function. In addition, we found that Fe 
was a protective factor for lung function. This study provided new evi-
dence regarding the effect of mixed heavy metals exposure on lung 
function, preclinical symptom of many respiratory diseases. 

Our study found that the joint effect of multiple heavy metals in 
blood significantly reduced lung function, both FVC and FEV1. Studies 
supporting our findings emerged recently. A cross-sectional study of 186 
welders in Anhui province, China found a significant association 

Fig. 3. The estimated change of FVC or FEV1 associated with the change in a single heavy metal from its 25th percentile to 75th percentile, where all of the other 
heavy metals are fixed at a particular threshold (25th, 50th, or 75th percentile). 

Fig. 4. Joint effects of heavy metals on FVC and FEV1 determined by the qgcomp model at baseline and follow-up.  
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between 23 metal mixtures exposure and lung function reduction [15]. 
Our study found a stronger joint effect of multiple heavy metals and a 
narrower confidence interval range than the aforementioned studies. 
Those differences might be explained by the larger sample size in our 
study. Besides, another cohort study with 2077 participants based on the 
data of strong heart study cohort in the United States also found that the 
joint negative effect of multiple metals including As, Cd, Molybdenum 
(Mo), Selenium (Se), Tungsten(W), and Zn, on FVC [16]. Generally, the 
results supported that multiple metal exposure impaired lung function. 
Our results also indicated that the higher concentration of heavy metals, 
the greater joint effects on lung function. Related biological mechanism 
studies also supported our finding. A rat-based animal study found that 
multiple metals can accumulate in the lung and cause damage to lung 
function [27]. In addition, multiple heavy metals exposure have been 
confirmed to be associated with inflammation [28] and oxidative stress 
[29], both of which may negatively affect lung function [28,30,31]. 

Some critical components, such as Cu and Ce, reduced lung function 
significantly. Excessive Cu was proved to be associated with respiratory 
diseases such as asthma [32], COPD [33] and chronic respiratory disease 
[34]. In a case-control study focusing on COPD, it was found that serum 
Cu levels were higher in COPD patients, and Cu was negatively associ-
ated with FEV1 and FVC. The study also found changes in biomarkers 
such as C-reactive protein levels, white blood cell counts, and sedi-
mentation rate, suggesting that the association between Cu and lung 
function may be mediated by inflammatory-like substances [35]. 
However, few studies focused on the association between Ce in blood 
and lung function. Inhalable Ce and CeO2 can settle in the alveolar area 
due to small particle size, and could increase lung burden when the 
deposition concentration exceeds the clearance concentration [36]. 
Specifically, excessive dose of CeO2 will lead to proliferation of lung and 
lymph tissues [36], and inhalation of CeO2 induces pulmonary inflam-
mation [37]. More studies are needed to further explore the detrimental 
effects of Ce on lung function. 

We found that Fe plays a protective effect on lung function. Fe plays a 
critical role in many pathways related to the respiratory system, such as 
oxygen transport, cell respiration, the activity of numerous enzymes, 
and immune function [38]. However, the effect of Fe on lung function is 
still unclear. In consistent with our results, a study from the fourth and 
fifth Korean National Health and Nutrition Examination Survey 
explored the association between serum Fe and lung function, and it was 
found that Fe was positively correlated with FEV1 in the Korean adult 
population [39]. There are other studies found that Fe deficiency may 
lead to harmful consequences of respiratory system, such as lung 
inflammation [40] and asthma [41]. However, another study focusing 
on participants with COPD found that exposure to Fe in the environment 
decreased FEV1 [42]. The difference between these two studies might be 
due to diverse effects of endogenous and exogenous Fe on human. 
Meanwhile, the effect of Fe on lung function shows different estimates 
and significance when the concentration of other heavy metals changes, 
which indicated that there was a complex interaction between Fe and 
other heavy metals. Further explorations are needed. 

The present study has several strengths. First, our study considered 
both single and the joint effects of multiple metals on lung function. 
Multiple exposures can better reflect the real-life exposure conditions 
than single exposure. Second, we used blood heavy metals concentra-
tions, which was more accurate than external exposure. Third, the 
BKMR model considered non-linear dose-response and multi-mixture 
interactions [25]. Moreover, the cohort design could ensure the reli-
ability of our study. 

There are also several limitations. First, other heavy metals present 
in blood that were not considered in this study, and these heavy metals 
may also have an effect on lung function. However, too much metals in 
the mixed exposure model might weaken the effect of critical compo-
nents [25]. Second, this study did not provide experimental validations. 
More experimental studies are needed to confirm our findings. Finally, 
in chronological order, the heavy metals in our study were measured 

after the lung function test and this might cause certain limitations in 
causal inference. However, unless a major heavy metal exposure event 
occurs, the concentration of heavy metals in the human body should not 
change largely in a short time. 

5. Conclusion 

Blood heavy metal mixtures could reduce lung function regarding 
both FVC and FEV1. The critical heavy metals are Cu, Ce and Fe. The 
single metal that will decrease lung function are Cu and Ce, while Fe has 
a protective effect on lung function. In view of the serious consequences 
caused by abnormal lung function, it is crucial to find ways to reduce 
heavy metals levels in human body. 

Environmental implication 

The pollution caused by heavy metals to the environment has 
become a great concern. The concentration of heavy metals in human 
body could accumulate through a variety of ways. Blood heavy metals 
levels have been shown to be adversely associated with a series of dis-
eases. However, evidence on heavy metal exposure and lung function is 
scarce, especially the evidence of joint effects of multiple heavy metal 
mixtures on lung function. This study provided new evidence regarding 
the effect of mixed heavy metals exposure on lung function. 
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Association of psychological distress and DNA methylation:
A 5-year longitudinal population-based twin study

Xuanming Hong, MD ,1,2 Ke Miao, BS,1,2 Weihua Cao, MD,1,2 Jun Lv, PhD,1,2 Canqing Yu, PhD,1,2 Tao Huang, PhD,1,2

Dianjianyi Sun, PhD,1,2 Chunxiao Liao, PhD,1,2 Yuanjie Pang, PhD,1,2 Runhua Hu, BS,1,2 Zengchang Pang, BS,3

Min Yu, MD,4 Hua Wang, MD,5 Xianping Wu, MD,6 Yu Liu, MD,7 Wenjing Gao, PhD1,2* and Liming Li, MD1,2*

Aim: To identify the psychological distress (PD)–associated
50-cytosine-phosphate-guanine-30 sites (CpGs), and investi-
gate the temporal relationship between dynamic changes in
DNA methylation (DNAm) and PD.

Methods: This study included 1084 twins from the Chinese
National Twin Register (CNTR). The CNTR conducted epide-
miological investigations and blood withdrawal twice in 2013
and 2018. These included twins were used to perform
epigenome-wide association studies (EWASs) and to vali-
date the previously reported PD-associated CpGs selected
from previous EWASs in PubMed, Embase, and the EWAS
catalog. Next, a cross-lagged study was performed to
examine the temporality between changes in DNAm and PD
in 308 twins who completed both 2013 and 2018 surveys.

Results: The EWAS analysis of our study identified 25 CpGs.
In the validation analysis, 741 CpGs from 29 previous EWASs

on PD were selected for validation, and 101 CpGs were
validated to be significant at a false discovery rate <0.05. The
cross-lagged analysis found a unidirectional path from PD to
DNAm at 14 CpGs, while no sites showed significance from
DNAm to PD.

Conclusions: This study identified and validated PD-related
CpGs in a Chinese twin population, and suggested that PD
may be the cause of changes in DNAm over time. The find-
ings provide new insights into the molecular mechanisms
underlying PD pathophysiology.

Keywords: DNA methylation, longitudinal studies, psychological

distress, twin study.

http://onlinelibrary.wiley.com/doi/10.1111/pcn.13606/full

Mental disorders are the leading contributors to the global health-
related burden, as they substantially affect daily functioning and qual-
ity of life, increase health care costs, and shorten life expectancy.1,2

Psychological distress (PD; negative stress) is a general term that
refers to nonspecific symptoms of depression, anxiety, and stress.3 As
one of the most vital risk factors for developing severe mental disor-
ders, PD causes a significant rise in anxiety and depression. A sub-
stantial amount of research has focused on the effects of PD on
health, particularly after the outbreak of coronavirus disease 2019
(COVID-19).4

The fundamental roles of epigenetic regulation, such as DNA
methylation (DNAm), have been implicated in mental disorders such
as depression since DNAm can alter depression-related gene expres-
sion.5 To date, DNAm in several important genes, such as BDNF,
NR3C1, and FKBP5 genes, are implicated in the regulation of states
of depression and anxiety in clinical samples.6 As a common feature
of both depression and anxiety states, PD is also well documented to
be associated with DNAm.7 Compelling evidence supports that
DNAm may be an essential physiological mechanism for responding
to mental stress.8 To date, there has been much epigenetic research on
PD and related mental disorders, and hundreds of associated DNAm
sites (50-cytosine-phosphate-guanine-30 sites [CpGs]) have been

reported.9–11 However, the results of these studies have varied widely,
i.e. epigenetic studies on psychology have poor reproducibility.12 Since
various factors, including genetic, psychological, and environmental, can
cause mental disorders, controlling for confounding factors presents a
significant challenge to these studies in this field.13 Twins, particularly
monozygotic (MZ) twins, share the same age, genetic information, and
some environmental factors. The twin study design is a valuable tool for
discovering changes in epigenetic markers associated with diseases.14,15

The plasticity of DNAm may be another explanation for the poor
reproducibility.16 Research suggests that mental stress can cause alter-
ations in DNAm, and through epigenetic regulation, it may have pro-
found effects on psychological and physical disease outcomes or
influence the severity of diseases.17,18 However, most relevant studies
were based on DNAm at specific genes and cross-sectional designs,
while longitudinal studies across multiple genes are further needed to
validate this mechanism.12

In the present investigation, we performed an epigenome-wide
association study (EWAS) on PD using whole-blood samples of 1084
twins from the Chinese National Twin Registry (CNTR) and a candi-
date CpGs association study based on previously reported CpGs associ-
ated with PD. Next, we conducted a longitudinal study to investigate
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the temporality between DNAm and the levels of PD by adopting a
powerful cross-lagged analysis method.

Methods
Study population
The current study was based on data from CNTR. Detailed descrip-
tions of the study design, data collection procedures, and population
characteristics have been provided elsewhere.19 In short, participants
from the CNTR were recruited from 11 provinces/cities in China with
large-scale baseline and follow-up investigations. The information
collection included questionnaires (levels of PD, demographic infor-
mation, lifestyles, and medical history), blood withdrawal (levels of
DNAm and serum biochemical tests), and physical examinations
(weight and height). The surveys were conducted twice, in 2013 and
2018. Study participants all provided informed consent. The study
protocols were reviewed and approved by the biomedical ethics com-
mittee at Peking University, Beijing, China (reference number:
IRB00001052-13022, IRB00001052-14021). Our study conforms to
the provisions of the Declaration of Helsinki.

Participants who fulfilled the following inclusion criteria were
included in the current study: (1) both twins completed questionnaires
and physical examinations; (2) blood samples were donated from both
twins; and (3) twins completed at least one data collection in 2013 or
2018. Pregnant women and their cotwins were excluded, and if one
twin was removed in the following DNAm data quality control or sta-
tistical analysis process, the cotwin was then excluded. A total of
1088 participants (mean age, 49.9 years; range, 19 to 82 years) were
initially included in the study. Among these, longitudinal data
were available for 318 participants (29.2% of the total study popula-
tion) who completed both 2013 and 2018 investigations.

Measurement of PD, twin zygosity, and covariates
The levels of PD were measured with the 6-Item Kessler Psychologi-
cal Distress Scale (K6). Participants were enquired about the fre-
quency of feeling nervous, so sad that nothing could cheer them up,
restless or fidgety, hopeless, and worthless. The frequency was graded
as 0 (all), 1 (most), 2 (some), 3 (a little), and 4 (none of the time).
The area under the curve (AUC) of K6 was assessed as 0.86, which
was higher than the 0.76 AUC of the World Health Organization’s
Composite International Diagnostic Interview Short-Form scales.20

An Illumina Methylation Chip panel of 59 single-nucleotide
polymorphisms (SNPs) was used to estimate twin zygosity. MZ twins
were defined as twins with >80% identical SNPs.21 In the present
study, 758 twins were identified as MZ twins.

Body mass index (BMI) was calculated as weight in kilograms
divided by height in meters squared (kg/m2). Smoking was catego-
rized as current, former, and never smokers.22 Drinking was classified
as current, former, and never drinkers.23

DNAm measurements
Genomic DNA was extracted from peripheral blood using a BioTeke
DNA extraction kit and then bisulfite-converted with an EZ DNA
Methylation Kit (Zymo Research). Whole-genome DNAm levels were
measured on Illumina 450K or EPIC Human Methylation Arrays,
interrogating DNAm at 485,512 and 853,307 CpGs across the
genome, respectively (Illumina). Assay reproducibility was 98%
between the two BeadChips for samples, and 90% of probes in 450K
could be replicated with the EPIC BeadChip.24 Illumina EPIC and
450K samples were merged into a combined data set using the
‘combineArrays’ function in the R package ‘minfi’ version 1.34.0,25

and only probes that appeared on both 450K and EPIC microarrays
were kept for analysis.

Methylation levels were quantified as β values ranging from 0 to
1, which indicate the proportion of methylation at each CpGs. They
were calculated using the formula: β = M/(M + U + 100), in which
M and U represent the mean probe signal intensity at each site for the
methylated and unmethylated states, respectively.25 The probe signal

intensities at each CpGs were measured using R package ‘minfi’.
After the calculation, β-values were quantile normalized utilizing the
R package ‘minfi’ and adjusted for blood cell counts using ‘ChAMP’
package version 2.18.3.26 To minimize the impact of potential con-
founders generated during the DNAm detection procedure, we con-
ducted experimental batch correction using the surrogate variable
(SV) analysis function in the R package ‘sva’ version 3.38.0.27 A
total of 121 and 28 SVs were generated for PD in the EWAS and
candidate CpGs validation analysis, respectively. The ComBat
approach was adopted for longitudinal data since the sample size was
relatively small. Quality control and probe exclusions were conducted
for DNAm data, and the details of the process are provided in Supple-
mentary Text and Fig. S1.

In total, our study included 378,654 CpGs that appeared on both
450K and EPIC arrays and 1084 participants with DNAm information
(308 participants with longitudinal DNAm data) for analysis.

Statistical analysis
An overview of the analysis procedures is provided in Fig. 1. Statisti-
cal analyses were conducted using R software version 4.0.3.

Identification of CpGs for PD
We conducted an EWAS and a candidate CpGs association study to
identify possible CpGs.

In the EWAS analysis, we assessed the association between PD
and methylation levels epigenome-wide for each CpGs included in
this study. Candidate CpGs were selected from the previously publi-
shed literature and were validated for their associations with PD. The
online databases PubMed (https://www.ncbi.nlm.nih.gov/pubmed),
Embase (https://www.embase.com), and EWAS catalog (http://www.
ewascatalog.org/) were systematically searched for previous EWASs
on PD and related mental disorders up to June 10, 2023. The detailed
search strategy, including selection standards, is described in the Sup-
plementary Materials.

In the full analysis population (n = 1,084), we performed linear
mixed-effect (LME) models to assess the associations between the
DNAm of the CpGs and the levels of PD for both the EWAS and
candidate CpGs association study. The DNAm levels at each CpGs
were included in the models as the dependent variable, while the K6
score was the continuous independent variable. Age, sex, smoking,
drinking, BMI, and SVs (generated from SV analysis) were fixed
effects in the LME model. Twin ID and zygosity (MZ or dizygotic
[DZ]), shared between the twin pairs, were considered random inter-
cept terms.

A discordant twin analysis was performed in MZ twins to further
control the genetic background behind the associations (i.e. within-
pair analysis, n = 758). We also utilized LME models in this part of
the analysis to examine the associations between the K6 score differ-
ence and the DNAm difference within MZ twin pairs. The difference
was calculated as the trait value of one twin minus that of their
cotwin. The average K6 score within twin pairs, in addition to age,
sex, smoking, drinking, and BMI, were fixed effects, and twin ID was
a random effect term in this analysis. The ComBat method was used
to adjust the batch effects of DNAm data for discordant MZ twin
analyses.

Sensitivity analysis was performed for both EWAS and candi-
date CpGs association study by removing those patients who reported
antidepressant medication use and their cotwins. All P values were
corrected by the false discovery rate (FDR) with the Benjamin-
Hochberg procedure. Significant identification and validation were
reported for CpGs with an FDR-adjusted P < 0.05. To annotate the
CpGs, the annotation file for the Illumina Infinium EPIC array
was used.

Cross-lagged model analysis
Cross-lagged model analysis was conducted on the longitudinal data
to evaluate the temporality between dynamic changes in DNAm and
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the levels of PD. The details and the parameter settings of the cross-
lagged model are provided in Fig. S2.

The CpGs validated to be associated with PD in the association
study were analyzed in the cross-lagged model. This model assesses
reciprocal and temporal relationships between traits while accounting
for the temporal stability of each construct through time and the con-
current associations between them. Before fitting the models, β-values
for DNAm were adjusted for batch effects using the ComBat
approach, and then log transformations were performed to improve
the fit of the cross-lagged models. In the models, ‘ρ1’ indicates the
prediction from the baseline DNAm level at a specific CpGs to
the within-person changes in the levels of PD at follow-up. In con-
trast, ‘ρ2’ denotes the prediction of the opposite cross-lagged orienta-
tion. Covariates were baseline age, sex, smoking, drinking, and BMI.
The comparative fit index (CFI) and standard root mean square resid-
ual (SRMR) determined adequate model fit: models with a CFI >0.90
and an SRMR <0.08 were defined as adequately fitted.28,29

The cross-lagged models were established using the R package
‘Lavaan’ version 0.6.15 in twins with longitudinal data (n = 308),
and the correlations between twin pairs were controlled by the ‘clus-
ter’ option in the R package.30 Cross-lagged coefficients with
P < 0.05 were considered significant.

In addition, the results derived from the cross-lagged models
were validated by utilizing the Inference About Causation Through
Examination of Familial Confounding (ICE FALCON) approach,
which allowed us to test the potential causality between DNAm and
the levels of PD. The details of the ICE FALCON approach are
described elsewhere.31 In short, the approach inferred the causality
between two phenotypes by assessing the confounding sources for
phenotypes of twin pairs using generalized estimation equations
(GEEs). Further details of the modeling in this study are provided in
the Supplementary Materials (Supplementary Text).

Results
Characteristics of the Study Population
Table 1 describes the detailed demographic information of the partici-
pants. The 1084 participants had a mean age of 50.0 years (standard

deviation [SD], 12.2 years) and included 758 MZ twins. The mean
K6 score was 7.1 � 3.3. The mean difference in K6 score between
twins was 1.7 for the full study twins and 1.6 for MZ twins (SDs of

Chinese National Twin Registry

Inclusion and Exclusion Process
4 twins were removed

Full participants

Cross-Sectional Analysis

EWAS study

Candidate CpGs association study

25 significant CpGs
were identified

Cross-lagged analysis

Baseline PD

PD may be the cause of

changes in DNAm

741 candidate CpGs were selected

from 29 previous EWAS, and 101

CpGs were validated for PD

Baseline DNAm

Follow-up PD

(n = 0)

(n = 14)

Follow-up DNAm

Longitudinal Analysis

Longitudinal data

All twins (n = 1084) All twins (n = 308)

MZ twins (n = 758) MZ twins (n = 186)

in QC for DNAm data

Fig. 1 Analysis workflow. CpGs, 50-cyto-
sine-phosphate-guanine-30 site; DNAm,
DNA methylation; EWAS, epigenome-
wide association study; MZ, monozygotic;
PD, psychological distress; QC, quality
control process.

Table 1. Characteristics of the analytic samples by study group

Cross-sectional
analysis Longitudinal analysis

Total Baseline Follow-up

Number 1084 308
Age, years 50.0 � 12.1 50.2 � 10.2 54.9 � 10.2
Women, n (%) 341 (31.5) 121 (39.3)
MZ, n (%) 758 (69.9) 186 (60.4)
K6 score 7.1 � 3.2 5.9 � 2.6 8.0 � 2.8
hs-CRP, mg/L 1.8 � 3.8 1.6 � 3.0 1.8 � 3.5
BMI, kg/m2 24.8 � 3.9 24.2 � 3.6 24.3 � 3.5
Smoking status, n (%)

Current smoker 355 (32.7) 95 (30.8) 87 (28.2)
Former smoker 143 (13.2) 25 (8.1) 35 (11.4)
Nonsmoker 586 (54.1) 188 (61.0) 186 (60.4)

Alcohol consumption, n (%)
Current drinker 461 (42.5) 156 (50.6) 85 (27.6)
Former drinker 73 (6.8) 10 (3.2) 27 (8.8)
Nondrinker 550 (50.7) 142 (46.1) 196 (63.6)

Depression, n (%)† 13 (1.2) 2 (0.6) 3 (1.0)
Antidepressant
medication, n (%)

7 (0.6) 1 (0.3) 1 (0.3)

†Depression was identified by self-report and documented hospital
discharge diagnoses.
a BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein;
K6, 6-Item Kessler Psychological Distress Scale; MZ,
monozygotic.
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Table 2. Cross-lagged coefficients for DNAm and psychological stress in the longitudinal analysis

CpGbase! psychological stressfollow Psychological stressbase !CpGfollow Goodness of fit

Probe ID ρ1 P ρ2 P SRMR CFI

cg16360861 �3.67 0.38 <0.01 0.01 0.03 0.93
cg24222435 0.65 0.41 0.01 0.02 0.01 0.96
cg06117184 �0.14 0.51 0.04 0.01 0.02 0.94
cg00080118 0.08 0.82 0.02 0.02 0.02 0.94
cg13423282 0.29 0.35 0.01 0.04 0.01 0.95
cg19159162 0.55 0.15 �0.03 0.02 0.03 0.90
cg04275707 0.12 0.70 0.01 0.02 0.03 0.91
cg26224466 0.11 0.80 0.03 0.04 0.01 0.98
cg00102615 7.74 0.28 >�0.01 0.04 0.06 0.82
cg22512377 0.21 0.62 0.02 0.01 0.04 0.86
cg10675453 �0.50 0.39 �0.01 <0.01 0.01 0.98

ρ1 represents the cross-lagged paths from baseline DNA methylation (DNAm) levels to follow-up psychological stress, and ρ2 indicates the path
from baseline psychological stress to follow-up DNAm. CFI, comparative fit index; CpG, 50-cytosine-phosphate-guanine-3; SRMR, standard root
mean square residual.
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Fig. 2 Manhattan plots of the epigenome-wide association study. Manhattan plots for (a) psychological distress in the full study population and (b) psychological
distress in monozygotic twins. The red horizontal lines represent the level of epigenome-wide significance (P = 1 � 10–5 and 1 � 10–7).
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2.6 and 2.5, respectively), and the within-pair correlation was 0.24 in
MZ and 0.26 in DZ twins. A total of 13 participants (1.2%) were
identified as having depression by self-report or documented hospital
discharge diagnoses, and seven participants (0.6%) were taking anti-
depressant medication.

Identification of CpGs associated with PD
In the EWAS for PD, 24 PD-associated CpGs remained significant
after FDR correction for multiple comparisons, while one CpGs was
identified at FDR <0.05 in discordant MZ twin analysis (cg03625010)
(Table S1). The Manhattan plot and QQ plot for EWAS analysis are
shown in Figs 2 and S3, respectively. In the sensitivity analysis of the
EWAS, a subset of seven patients who were using antidepressant medi-
cation were excluded from the analysis with their cotwins (14 patients
in total) and 24 sites were identified, which were consistent with the
results of the primary analyses in the overall population (Table S2).
Conversely, no site reached significance in the sensitivity analysis con-
ducted on discordant MZ twins, where 12 patients were excluded.

Next, to validate the associations between PD and the previously
reported CpGs, we searched PubMed, Embase, and EWAS catalog
databases for relevant EWAS studies. Figure 3 displays the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2009 flow chart for the literature search process of finding
candidate CpGs, which followed PRISMA guidelines.32 After inclu-
sion and exclusion, 29 articles providing 902 candidate CpGs were
identified. Among these, 741 sites were available in our DNAm data
(Table S3).

For the full analysis population, we validated 85 candidate CpGs
to be associated with the levels of PD. Among these, only 11 sites
have reported the association direction in the original literature, and
all of them revealed the same directions as in previous studies. In the
discordant MZ twin analysis, 12 sites were validated for PD, and four
sites with the reported association direction by the original literature

all showed the same directions (Table S4). The sensitivity analysis
conducted on the candidate CpGs association study yielded validation
for 47 sites in the full population analysis and five sites in the analysis
of discordant MZ twins. Of these, an additional five and one sites
were validated in the sensitivity analysis for the full population and
discordant MZ twins, respectively. All of these sites exhibited the
same direction of association as reported in the original literature
(Table S5).

Finally, a total of 125 CpGs were identified or validated for PD
and retained for the subsequent analysis. These CpGs were annotated
to 119 genes. Among these CpGs, 94 were at the enhancer or the
putative promoter region of the genes (transcriptional start site [TSS]
1500, TSS200, 50 untranslated region, and the first EXON),
suggesting a regulatory effect on the expression of the specific
genes.33,34

Cross-lagged analysis
The cross-lagged analysis, based on longitudinal twin data (n = 308),
investigated the temporality between PD and DNAm.

Eleven significant cross-lagged paths were observed for the full
analysis population, and all were from the levels of baseline PD to
DNAm at follow-up. Among these, two models (from base PD
to DNAm of cg00102615 and cg22512377 at follow-up) showed poor
fit based on values of CFI (0.82 and 0.86, respectively) <0.90
(Table 2).

We conducted a cross-lagged analysis in MZ twins as a sensitivity
analysis. The results were similar to the main results: unidirectional
effects from the levels of PD to DNAm were found at 12 CpGs. How-
ever, the model fits for five of these sites were poor (cg01947751,
cg16360861, cg19825186, cg18163441, and cg16302458) and were
removed from the following analysis. In addition, cg22033189,
cg03584288, cg10041390, cg15587947, and cg19921130 were identi-
fied in MZ twins (Table S6). In summary, we identified significant

Records identified through

database searching

(PubMed n = 317; Embase n = 1135)

Records identified through

EWAS catalog searching

(n = 5)

Records after duplicates removed

(n = 1066)

Records screened

(n = 1066)

Records excluded

(n = 514)

Full-text articles excluded with

reasons:

candidate gene study (n = 191);

unrelated diseases or

symptoms (n = 63);

neurological disorders (104);

no significant sites reported (17);

animal studies (69);

perinatal depression (33);

treatment, diagnosis, drug

use (34);

differentially methylated regions

study (12)

Full-text articles

assessed for eligibility

(n = 552)

Studies included in

identification of candidate

CpG sites association study

(n = 29)

Candidate CpGs for

psychological distress and related

mental disorders

(902 sites from 29 studies)

Fig. 3 Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses 2009
flow chart. CpGs, 5-cytosine-phosphate-
guanine-30 site; EWAS, epigenome-wide
association study.
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cross-lagged effects from baseline PD to follow-up DNAm at 14 CpGs.
No CpGs showed a path from DNAm levels at baseline to the levels of
PD at follow-up.

Finally, ICE FALCON analysis was conducted to validate whether
the temporal relationships from the cross-lagged analysis could be causal.
The causal role of PD on DNAm at cg24222435 was validated
(Table S7). The model settings and the interpretation of the results are
presented in detail in the Supplementary Materials (Supplementary Text).

Discussion
In the current study, we first conducted an EWAS on PD and identi-
fied 25 associated CpGs. Then, in the candidate CpGs association
study, we systematically searched the PubMed, Embase, and EWAS
catalog databases and validated 101 CpGs for PD and related mental
disorders. The longitudinal analysis revealed 14 cross-lagged predic-
tions, all from the baseline levels of PD to DNAm at follow-up.
Among these, the causal effect of PD on the methylation of
cg24222435 was validated using the ICE FALCON approach.

CpGs associated with PD
In the EWAS analysis, we identified 24 novel CpGs for PD, which
were annotated to 14 genes. Among these, four CpGs were annotated
at the enhancer or the putative promoter region of genes, and these
genes have been implicated in mental health. cg13720581 was anno-
tated to the tenascin-XB gene (TNXB), which have been linked genet-
ically and epigenetically with psychiatric disorders, such as
schizophrenia and anorexia nervosa in previous studies.35,36 The
TRPV5 gene (annotated from cg13675849) may participate in the
pathophysiology of several cerebral diseases, such as schizophrenia
and depression, through the role of serum- and glucocorticoid-
inducible kinase 1 in the regulation of neuronal function.37 The
NRG2 gene (annotated from cg11061655) encodes a novel member
of the neuregulin family of growth and differentiation factors.38 An
animal study used NRG2 knockout mice to assess the function of this
gene and revealed a novel role for NRG2 in the modulation of behav-
iors relevant to psychiatric disorders.39 cg03625010, identified in the
discordant MZ analysis, was annotated to the SOX5 gene, which par-
ticipate in neurogenesis and other discrete developmental processes
by encoding one of the SOX family of transcription factors that are
involved in cell fate and differentiation.40 Notably, three sites from
the EWAS results were annotated to the N6AMT2 gene, which is
known to be involved in the methyl transfer process and is over-
expressed in many cancers, which may reflect the increased protein
synthesis needs of fast-growing cells.41

Although there have been many studies on the associations
between DNAm and PD and related mental disorders, and hundreds
of DNAm sites or regions have been reported, the results from differ-
ent studies are inconsistent. A recent systematic review noted that the
reproducibility of epigenetic studies on psychology was poor, espe-
cially for individual CpGs.12 Various factors could contribute to the
inconsistency of results, including small sample size, lack of stan-
dardized objective assessments of PD and statistical analysis. The
inadequate adjustment for key covariates such as blood cell counts
and batch effects and the less stringent threshold for detection
(P < 1e-4 or FDR <0.10 rather than FDR <0.05) could both affect the
outcomes and lead to low credibility of the results.42,43 In addition,
the methylation level and the psychological status can both be
influenced by ethnic differences and might thus have resulted in con-
founding that could bias estimates.44–46 To validate these associations
that have been previously reported and provide evidence from the
Chinese population, an association study of candidate CpGs in
Chinese twins was conducted after controlling for genetic and environ-
mental factors, as well as batch effects and blood cell composition.

The 90 CpGs validated in the candidate CpGs association study
for the full analysis population were annotated to 99 genes. Among
these, 12 CpGs were at the genes’ enhancer or putative promoter
region and have been implicated in psychological disorders.

cg19014730, cg00610228, and cg00052684 were all annotated to the
FKBP5 gene. This gene encodes the protein FKBP5 (FK506-binding
protein 5), which regulates the sensitivity of the glucocorticoid recep-
tor and is critically involved in the response mechanisms to stress and
anxiety disorders.47,48 Studies have indicated that DNAm of the
FKBP5 gene is assumed to alter FKBP5 expression and hence
the synthesis of FKBP5.49 Our study further provides evidence that
methylation of the FKBP5 gene may play a significant role in physio-
logical and pathological processes of PD. A previous review reported
that behavioral abnormalities, including aggression and anxiety, are
frequently observed in patients carrying pathogenic variants of
HNRNPU gene (annotated from cg22320000).50 GCH1 (annotated
from cg05105845) is suggested to be associated with anxiety and
pain-related processes.51 Variations in NTRK2 (annotated from
cg13965062) are highlighted as potential depression risk factors.52

Downregulation of HSPA1B (annotated from cg19159162) may alter
glucocorticoid sensitivity and has been conceived as an offender in
the pathophysiology of major depressive disorder (MDD).53 More-
over, previous studies have reported that depression-like behaviors
were observed in mice with overexpression of the PTEN gene (anno-
tated from cg10041390), and the deletion or knockdown of PTEN in
the prefrontal cortex prevented depression-like behaviors.54 The
expression of the PGM1 gene (annotated from cg02994863) was
reported to be increased in patients with bipolar disorder.55 The
MBOAT7 gene (annotated from cg12173535) is primarily expressed
in the liver and is related to inflammatory processes.56 Pathogenic
variants of this gene are newly discovered to be a rare cause of intel-
lectual disability and autism spectrum disorder.57 The CNNM2 gene
(annotated from cg23843362) has been reported to have a pivotal role
in brain development.58 A variant rs7914558 at CNNM2 was associ-
ated with brain stricture and cognition, suggesting an association
between CNNM2 and PD.59 Decreased NDUFA (annotated from
cg07987587) expression in lymphocytes of patients with bipolar dis-
order has been reported by previous studies evaluating markers of
mitochondrial oxidative phosphorylation.60 The upregulation of the
VPS35 gene (annotated from cg09238957) has been shown to rescue
α-synuclein–induced neurodegeneration and has been linked to
Parkinson disease and depressive-like behaviors.61,62 The GGA3 gene
(annotated from cg09238957) is highly expressed in the brain and
neurons. Previous animal experiments have confirmed the role of
GGA3 in novelty-induced hyperactivity and decreased anxiety-like
behaviors.63 An experimental animal study demonstrated that the
gene expression of CITED2 (annotated from cg05607246 in the sensi-
tivity analysis) can be altered by chronic psychological stress.2

Another study examining the molecular basis of mood disorders
reported that CITED2 is one of the hub genes, while its expression
and dysregulation patterns were associated with mood disorder.64

In the discordant MZ analysis, genetic background and early
environmental factors were further controlled, and 13 CpGs were vali-
dated. It is worth mentioning that 11 of the 13 sites were additionally
validated in the MZ twin population but not in the full analysis popu-
lation. One reason for this fact is that since discordant MZ twin
design controls for genetic variation, environmental factors are
suggested to play a major role in these validated CpGs. A well-
documented effect of the environment on DNAm has been demon-
strated to contribute to disease susceptibility through methylation.8

The findings from discordant MZ analysis may provide new insight
into the environmental contributions underlying the relationship
between PD and DNAm.

From the results, the NEGR1 gene (annotated from cg09256413),
which is highly expressed in the cerebral cortex and hippocampus, was
one of the most significant genes for depression.65 Brain-derived neuro-
trophic factor (BDNF, annotated from cg23497217), as one of the
major neurotrophic factors, plays an essential role in the survival, dif-
ferentiation, and growth of peripheral and central neurons during devel-
opment and in adulthood.66 Of note, many studies have demonstrated
the relationships of BDNF with psychological disorders, including
depression, distress, and anxiety.67 In addition to the above-discussed
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genes, many genes, such as RNF8 annotated from cg27597069,
DNAJA2 from cg06939115, and SNHG12 from cg22033189, were
reported to be associated with neurodevelopmental processes, nerve
signal transmission, and psychiatric and neurodegenerative diseases,
which may underlie common pathophysiology in various psychological
disorders.68–74

In addition, 68 of the 101 CpGs validated from the candidate
CpGs association study overlapped with an EWAS on MDD based
on 39 Japanese individuals (including 20 patients with MDD and
19 controls) from Tokushima and Kochi University Hospitals, with a
mean age of 44.2 � 15.2. years75 The similar ethnic backgrounds and
age range of our study population may be the leading cause for the
overlap, suggesting that ethnic and genetic factors and age play a part
in the epigenetic mechanisms of PD.

Temporality between DNAm and PD
The effects of epigenetic modulation on the development of psycho-
logical disorders have been the subject of intense study. Increasing
evidence indicates that physiological and psychological stress may
alter DNAm at critical genes.5 The Environmental Risk (E-Risk)
Longitudinal Twin Study in the United Kingdom has made several
contributions in the field of DNAm change resulting from psychologi-
cal stress, childhood adverse experiences and childhood psychotic
symptoms.12,76,77

To our knowledge, this is the first study that used a cross-lagged
design to investigate the temporal relationship between DNAm and
PD. Consistent with previous studies, we revealed that the levels of
PD could predict DNAm at 14 CpGs, suggesting the causal effects
of the levels of PD on epigenetic alterations. By adopting the ICE
FALCON approach, we validated the causal relationship between PD
and the methylation level at cg24222435. PD is the cause of several
lasting biological consequences, particularly for the endocrine system.
It can also affect a range of intermediate phenotypes, including brain
structure and function, physiological function, and behavioral
changes.78 Evidence suggests that molecular mechanisms related to
epigenetic regulation may contribute to susceptibility and resilience
to the effects of trauma and stress.8

On the other hand, through certain pathways, DNAm may
increase the impact of stressful experiences. A study based on longi-
tudinal data from 100 middle-aged Black women used structural
equation models and found that DNAm at OXTR may mediate the
associations between adult adversity and the development of depres-
sion.79 Another study on 33 adolescents aged 12 to 13 years observed
that DNAm might mediate the relationships between neighborhood
disadvantage and brain development.80 Although further validation is
needed, this evidence demonstrates that the DNAm influenced by dis-
tress might play a role in developing more severe mental/neurological
diseases.

Our study provides strong evidence that PD could act on the
alteration of DNAm. However, the specific roles and mechanisms
underlying the effects remain poorly understood, and further explora-
tion is needed.

Strengths and limitations
The present study has strengths. First, we adopted two strategies to
identify the PD-related CpGs: EWAS analysis and a candidate CpGs
association study were conducted among the twin population, which
added confidence to the observed results and helped increase the
probability of identifying significant CpGs for the subsequent analy-
sis. For DNAm studies, the twin population has a unique value
because they are naturally matched for genetic and environmental fac-
tors. Second, to our knowledge, this is the first study to assess the
temporality between DNAm and the levels of PD by studying their
cross-lagged effect patterns.

The study also has several limitations. First, the K6 scale score
is not a diagnostic measure, and it includes only depression and anxi-
ety symptoms, while the dimensions of severe psychopathologies are

not demonstrated. However, the K6 score may be a better indicator of
the need for mental health services than individual disorders that vary
widely in severity since it is a dimensional scale.20 Second, the asso-
ciations between PD and DNAm at a number of CpGs previously
reported were not validated in the present study, and may be due to
ethnic heterogeneity of methylation levels and their relationship with
PD. Different study designs may also be a potential explanation. Fur-
ther validation is needed for other ethnicities and ancestries. Finally,
the sample size for longitudinal and discordant MZ twin analysis was
relatively small. A larger sample size is required to investigate the
association and temporality between DNAm and the levels of PD.

Conclusion
In summary, our study identified 25 CpGs in the EWAS analysis and
validated 101 CpGs from previous studies in the Chinese twin popu-
lation for their associations with PD. Using the longitudinal design,
we found a unidirectional effect of the levels of PD on DNAm at
14 CpGs, and a causal effect of PD on DNAm at cg24222435 was
validated, suggesting that PD is likely to be the cause of changes in
DNAm over time. These findings provide new insights into the
molecular mechanisms underlying the pathophysiology of PD.
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Abstract 

Precision medicine depends on high-accuracy individual-level genotype data. Ho w e v er, the whole-genome sequencing (WGS) is still not suitable 
for gigantic studies due to budget constraints. It is particularly important to construct highly accurate haplotype reference panel for genotype 
imputation. In this study, we used 10 0 0 0 samples with medium-depth WGS to construct a reference panel that we named the CKB reference 
panel. By imputing microarray datasets, it showed that the CKB panel outperformed compared panels in terms of both the number of well- 
imputed variants and imputation accuracy. In addition, we have completed the imputation of 100 706 microarra y s with the CKB panel, and the 
after-imputed data is the hitherto largest whole genome data of the Chinese population. Furthermore, in the GWAS analysis of real phenotype 
height, the number of tested SNPs tripled and the number of significant SNPs doubled after imputation. Finally, we developed an online server for 
offering free genotype imputation service based on the CKB reference panel ( https:// db.cngb.org/ imputation/ ). We belie v e that the CKB panel is 
of great value for imputing microarray or low-coverage genotype data of Chinese population, and potentially mixed populations. The imputation- 
completed 100 706 microarray data are enormous and precious resources of population genetic studies for complex traits and diseases. 

Received: January 19, 2023. Revised: August 2, 2023. Editorial Decision: August 30, 2023. Accepted: September 12, 2023 
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http: // creativecommons.org / licenses / by / 4.0 / ), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad779/7327062 by guest on 24 O

ctober 2023

https://doi.org/10.1093/nar/gkad779
https://orcid.org/0000-0002-0019-0014
https://orcid.org/0000-0001-7240-3819
https://orcid.org/0000-0002-9814-0049
https://orcid.org/0000-0002-5338-5173
https://orcid.org/0000-0001-5873-7089
https://db.cngb.org/imputation/


2 Nucleic Acids Research , 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad779/7327062 by guest on 24 O

ctober 2023
Introduction 

In recent years, precision medicine has made remarkable
achievements in complex diseases retreatment and develop-
ment of target drugs by using molecular biological informa-
tion (e.g. individual genome) and clinical symptoms ( 1 ,2 ).
Precision medicine relies on high-throughput whole-genome
data to implement individual-based clinical diagnosis and
treatment for patients. However, although the cost of whole-
genome sequencing (WGS) technology has been greatly re-
duced, there is still a budget problem for large-scale pop-
ulation research. Most researchers still prefer the low-cost
microarray-based genotyping technology, which sequences
known loci to obtain genotype data for follow-up analysis.
But microarray cannot mine novel mutation sites related to
the disease, so there are limitations in the interpretation of
the genetic mechanism of the disease. At present, the common
method is to impute the microarray data at the whole-genome
level based on the appropriate reference panel thus to obtain
the whole-genome data for a population. The selection of ref-
erence genome plays an important role in the imputation ac-
curacy of genome data and subsequent analysis results. 

Internationally, the haplotype map (HapMap) ( 3 ,4 ), 1000
Genomes Project (1KGP) ( 5 ,6 ), the Haplotype reference con-
sortium (HRC) ( 7 ) and trans-omics for precision medicine
(TOPMed) ( 8 ) have been launched. The HapMap project is
the next major human genomic program after the Interna-
tional Human Genome Project. In 2007, the HapMap (phase
3) sequenced 1184 individuals from 11 populations. In 2015,
American, British and Chinses scientists jointly announced the
completion of the Thousand Human Genome Project (phase
3), which sequenced the whole genomes of 2504 individuals
from 26 global populations and created the most comprehen-
sive genetic polymorphism map of the human genome. The
1KGP panel is the most-commonly used genome data to date.
Recently, the expanded 1KGP cohort including 602 trios were
published, in which all 3202 samples were sequenced to a high
depth of 30 times ( 6 ). In 2016, the HRC project integrated
20 studies, such as UK10K and 1KGP, and created a reference
panel with 32 470 individuals mostly with low-coverage WGS
data ( 7 ). The latest TOPMed reference panel collected 97 256
individuals, including 47 159 Europeans, 24 267 Africans, 17
085 admixed Americans, 1184 East Asians, 644 South Asians 
and other populations ( 8 ). 

In recent years, in addition to the international haplotype 
reference projects, national haploid genome sequence consor- 
tiums have also been initiated in various countries, includ- 
ing Netherlands, Denmark, Iceland and Singapore. The Dutch 

Human Genome Project sequenced 250 pedigrees at mod- 
erate depth (12 ×) to construct haploid reference sequences,
substantially improving the accuracy of genotype inference 
for low-frequency variants ( 9 ). The Danish Genome Project 
sequenced 50 Danish families at high-depth (80 ×) WGS to 

construct the first Danish genome-wide high-precision hap- 
lotype reference panel ( 10 ). The Icelandic Genome performed 

high-depth (20 ×) WGS on ∼2000 individuals to create haplo- 
type reference sequences, significantly improving the efficacy 
of association analysis and complex disease studies ( 11 ). The 
SG10K reference panel sequenced 4810 individuals, including 
2780 Chinese, 903 Malays and 1127 Indians, with an average 
sequencing depth of 13.7 × ( 12 ). This database is a valuable 
resource to advance the genetic study of complex traits and 

diseases in Asians. 
China has the largest population in the world, producing 

enormous genetic resources, and should make a greater contri- 
bution to human genetics and complex disease research. How- 
ever, the lack of high-quality haplotype reference sequences 
has become a bottleneck in the fields of population genet- 
ics and molecular biology . Fortunately , in the past 2 years,
researchers have constructed reference panels based on Chi- 
nese population: the ChinaMAP (China Metabolic Analytics 
Project) and the Nyuwa reference panels. The ChinaMAP con- 
sortium performed 40 × deep WGS on 10588 individuals col- 
lected from different regions and ethnicities in China ( 13 ,14 ).
The library construction and WGS were performed on the 
BGISEQ-500 platform at BGI-Genomics. The ChinaMAP ref- 
erence panel is a high-quality genetic variation database of 
Chinese population and plays an essential role in the anal- 
ysis of Chinese population structure, genetic variation spec- 
trum and pathogenic variants. The NyuWa reference panel 
includes 2902 independent samples with high-depth (26.2 ×) 
WGS collected from 23 administrative regions of China ( 15 ).
It is important to expand the diversity of genetic resources and 
Gr aphical abstr act 
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improve the accuracy of medical research in Chinese popula- 
tion. 

The China Kadoorie Biobank (CKB), previously known as 
the Kadoorie Study of Chronic Disease in China (KSCDC), 
is an international collaborative research project on chronic 
diseases jointly conducted by Peking University, Chinese 
Academy of Medical Sciences and University of Oxford, UK 

( 16 ). It is a gargantuan prospective study and the largest Chi- 
nese population cohort to date. During 2004–2008, > 510 

000 adults were recruited from 10 geographically defined re- 
gions in China. The study aims to establish a database of 
blood samples and clinical information and to investigate the 
main genetic and environmental causes of common chronic 
diseases. To date, the CKB cohort has achieved numerous 
influential findings in clinical studies, such as the relation- 
ship between smoking, physical activity, fresh fruit intake, 
egg consumption and the risk of cardiovascular disease ( 17–
20 ), the association between diabetes and the risk of death 

( 21 ) and the relationship between smoking, alcohol and tea 
consumption and esophageal cancer ( 22 ). However, unfortu- 
nately, there are no large-scale population genetics and ge- 
netic background studies of complex traits and diseases based 

on the CKB cohort ( 23 ). A major reason is the lack of high- 
density genetic data. Although microarray testing (Affymetrix 

Axiom myDesign) of > 100 000 samples has been completed, 
the data are still not comparable to WGS data in terms of 
the number of genetic variants and the detection of novel 
loci. 

In this work, we constructed a high-resolution haplotype- 
resolved reference panel based on 9950 individuals from the 
CKB cohort and 50 Chinese samples from the 1KGP study, 
with an average sequencing depth of 15.41 ×. We evaluated 

the imputation performance of the CKB reference panel from 

the perspective of number of imputed variants and imputa- 
tion accuracy. The compared reference panels include the ex- 
tended high coverage 1KGP, the newly developed TOPMed, 
the ChinaMAP and the NyuWa panels built from the Chinese 
population. In addition, based on the constructed CKB panel, 
we completed the genotype imputation for 100 706 microar- 
ray samples and obtained the largest whole genome data in 

the Chinese population. We further performed the genome- 
wide association study (GWAS) of human height based on the 
100 706 microarray data before and after imputation. The 
total number of SNPs used in GWAS tripled after imputation 

and the number of significant loci increased from 119 to 147, 
while 26 out of the additional 28 identified loci were previ- 
ously reported to be associated with height. We also created 

an online imputation server to offer free genotype imputation 

service ( https:// db.cngb.org/ imputation/ ). 

Materials and methods 

Subjects 

In this project, we constructed a haplotype reference panel 
based on 10 000 Chinese individuals, including 9950 from 

the CKB cohort and 50 from the 1KGP Han Chinese. The 
CKB project recruited > 510 000 adults aged from 30 to 79 in 

10 (five urban, five rural) geographic regions of China. These 
9950 individuals were stroke cases from the cohort. The 50 

1KGP samples included 20 northern and 30 southern Han 

Chinese. We also used 100 706 CKB microarray samples (in- 
dependent of the 9950 samples) in subsequent analyses. Writ- 

ten informed consent was obtained from all participants from 

the CKB cohort. 

DNA samples and library construction 

The WGS was performed for the 10 000 samples. Specifically, 
DNA concentration was measured by ExKubit dsDNA HS As- 
say Kits (Shanghai ExCell Biology, Inc) and Fluostar Omega 
Microplate Reader (BMG Labtech GmbH). The DNA qual- 
ity was evaluated by agarose gel electrophoresis at a constant 
voltage (180 V) for 35 min. The DNA shearing was done by 
the Covaris E220 ultrasonics DNA shearing instruments. The 
DNA purification and fragment size selection were applied by 
VAHTS DNA Clean Beads (Vazyme, #N411). The libraries 
were constructed on BGI’s DNBseq-T1 × 4RS platform and 

the loading DNA concentration was > 12 ng / μl. The paired- 
end 100-bp (PE100) WGS with 350-bp insert sizes was per- 
formed on the MGI DNBSEQ sequencing platform. 

Variant calling and sample quality control 

To perform variant calling on each sample (also known as in- 
dividual variant calling), we first applied SOAPnuke (v.2.1.1; 
-n 0.1 -l 12 -M 2) ( 24 ) to filter low quality reads and re- 
move adapter sequences. Then, we obtained aligned Binary 
Alignment / Map (BAM) files by aligning sequence reads to 

the GRCh38 human reference genome assembly with Sentieon 

(v.202010.04) bwa-mem algorithm ( https://www.biorxiv.org/ 
content/ 10.1101/ 115717v2 ). On the sorted and aligned BAM 

files, we used Sentieon drivers LocusCollector to collect infor- 
mation on duplicates and Dedup to remove the duplicates. For 
regions that contain insertions or deletions (INDELs), we fur- 
ther performed local realignment around INDELs to correct 
for mapping errors and increase the quality of INDEL detec- 
tion by using the Sentieon Realigner algorithm. To increase 
the accuracy of variant calling, we carried out base quality 
score recalibration (BQSR) to BAM files based on the Sen- 
tieon QualCal algorithm, which created a recalibration table. 
This table file was then applied as an input to Sentieon Hap- 
lotyper for single-nucleotide polymorphisms (SNPs) and IN- 
DELs detection. After all these steps, we obtained the called 

variant sites for each sample in gVCF format. Note that, for 
this variant calling workflow, we used the Sentieon DNASeq 

toolkit instead of the GATK best practice ( 25 ) for the follow- 
ing reasons: ( 1 ) the DNASeq and GATK have near-identical 
variant detection accuracy, ( 2 ) the DNASeq is > 30 times faster 
than GATK and ( 3 ) the DNASeq may be more suitable for less 
deeply sequenced samples ( https://www .biorxiv .org/content/ 
10.1101/115717v2 ). 

Before performing joint variant calling, we first selected 

samples with ( 1 ) no evidence of contamination (VerifyBamID 

FREEMIX < 0.03) ( 26 ), ( 2 ) high library quality measured 

by reads duplication rate < 0.05, ( 3 ) mean sequencing depth 

≥10 × and ( 4 ) GC content between 40 and 44. The joint vari- 
ant calling was then performed by GVCFtyper algorithm im- 
plemented in Sentieon, followed by variant quality score re- 
calibration (VQSR) for SNPs and INDEls separately using 
GATK ( 27 ). In this way, we first built the models with Vari- 
antRecalibrator and then applied it in ApplyVQSR. After that, 
ExcessHet > 54.69 and low-quality sites that did not pass 
VQSR were filtered out by SelectVariants. Finally, we calcu- 
lated genotype posterior probabilities by CalculateGenotype- 
Posteriors. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad779/7327062 by guest on 24 O

ctober 2023

https://db.cngb.org/imputation/
https://www.biorxiv.org/content/10.1101/115717v2
https://www.biorxiv.org/content/10.1101/115717v2


4 Nucleic Acids Research , 2023 

Reference panel construction 

After calculated genotype posterior probabilities, we further 
set low quality genotypes (GQ < 20) as missing and then re- 
moved low-complexity sites with minimum count of less than 

one or with missing alternate (ALT) allele. We also split a 
multiallelic SNP with more than one ALT allele to biallelic 
SNPs, with each ALT allele in a separate row. Next, we per- 
formed genotype phasing (also known as phasing / haplotype 
estimation), which is the process of statistical estimation of 
haplotypes from genotype data. This step was done by Beagle 
v.5.2 ( 28 ). Note that, during these steps, we did not remove 
related samples since the genetic relatedness can be modeled 

and improve haplotype phase accuracy. This concept was bor- 
rowed from the generation of the latest version of the 1000 

Genome Project reference panel, in which the phasing accu- 
racy was evaluated between inclusion and exclusion of trios; 
and the evaluation result showed that phasing with pedigree 
data achieved higher accuracy compared to unrelated samples 
alone ( 6 ). Finally, we removed close relatives up to the second 

degree generated by KING v.2.2.7 ( 29 ) as the related sam- 
ples can distort the population allele frequency estimation in 

the subsequent analysis. After then, we obtained the reference 
panel, which we named as CKB reference panel. The construc- 
tion workflow is provided in Figure 1 . 

We performed annotation analysis with the Ensembl Vari- 
ant Effect Predictor (VEP) ( 30 ) by using plug-ins SIFT ( 31 ) and 

PolyPhen ( 32 ) algorithms. Additionally, we used ClinVar ( 33 ), 
( 34 ) to label pathogenic variants and their related diseases in 

the ClinVar database. We kept variants only when its reference 
allele and alternate allele were consistent with that of CLIN- 
HGVS, which is a new INFO tag that reports the top-level 
genomic HGVS (Human Genome Variation Society) expres- 
sion for the variant. We further calculated the alternate allele 
frequency (AF) as AF = AC / AN, where AC is the alternate 
allele count and AN is the total number of alleles. 

Evaluation of the imputation performance 

We conducted extensive scenarios to evaluate the imputation 

performance of the CKB panel and others, including the ex- 
tended 1KGP, TOPMed, ChinaMAP and NyuWa reference 
panels. There were two datasets to be imputed: the CKB mi- 
croarray data and the 1KGP microarray data. From the CKB 

cohort, 50 randomly selected samples independent of that in 

the CKB reference panel were genotyped in both SNP array 
and high coverage WGS (44.14 ×). The 50 1KGP microar- 
ray samples were all Chinese and also independent of those 
in the CKB reference panel. To evaluate the imputation per- 
formance, we compared number of imputed variants and im- 
putation accuracy. For the imputed variants, we defined high- 
quality variants with an imputed information score > 0.8 and 

medium-quality variants with an imputed information score 
between 0.4 and 0.8. For the imputation accuracy, we calcu- 
lated Pearson correlation coefficient ( R 

2 ), precision and sen- 
sitivity. The high coverage WGS data were treated as ground 

truth when computing imputation accuracy between the im- 
puted and true genotypes. For the CKB and extended 1KGP 

panels, we performed imputation procedures locally; while for 
TOPMed, ChinaMAP and NyuWa, we submitted jobs to their 
online imputation servers and downloaded the after-imputed 

files. 
To assess the precision and sensitivity, we first calculated the 

true positive (TP), false positive (FP), false negative (FN) and 

true negative (TN). The TP indicates that the imputed geno- 
type correctly predicts the true WGS genotype. The FP is an 

error classification where the imputed genotype incorrectly 
indicates the presence of a WGS variant. The FN is also an 

error classification where the imputed genotype incorrectly 
indicates the absence of a WGS variant. The TN is an out- 
come where the predicted genotype correctly predicts the case 
of homozygous reference calls. The details of 3 × 3 confu- 
sion matrix of defining TP , FP , FN and TN were provided 

in Supplementary Table S1. To eliminate the bias caused by 
the number of imputed variants, we compared the ratios of 
TP , FP , and FN instead of their counts directly. The TN value 
for all panels was zero. The ratio of TP was calculated by 
TP / (TP + FP + FN + TN), same for FP and FN. The preci- 
sion was computed by TP / (TP + FP) and the sensitivity was 
computed by TP / (TP + FN). 

Imputation for 100 706 microarray data 

We imputed 100 706 CKB microarray data based on the CKB 

reference panel in Beagle v.5.2 ( 28 ). Note that, the 50 sam- 
ples with both microarray and high-coverage WGS data were 
included in the 100 706 individuals. To carry out imputation 

efficiently, we randomly divided the 100 706 samples into 21 

chunks, in which 20 chunks contained 4800 samples and one 
chunk contained 4706 samples. Then, we parallelly executed 

genotype imputation for these chunks. To assess the perfor- 
mance for imputing such a large volume of data using the 
developed CKB panel, we extracted the 50 after-imputed mi- 
croarray samples and calculated the Pearson correlation coef- 
ficients with their high coverage WGS set. We also compared 

this imputation accuracy with that of imputing the 50 mi- 
croarray samples alone. 

PCA of the CKB reference panel and 100706 

microarray data 

To detect population stratification, we carried out principal 
component analysis (PCA) ( 35 ,36 ) of genotype data in the 
CKB reference panel. The PCA was carried out in Plink v.1.9 

( 37 ) with autosomal biallelic SNPs satisfying the following 
conditions ( 1 ) MAF ≥1%, ( 2 ) genotyping rate ≥90%, ( 3 ) 
Hardy–Weinberg equilibrium (HWE) P -value > 1E-06 and ( 4 ) 
low linkage disequilibrium (LD, r 2 < 0.5) with other vari- 
ants in windows of 50 SNPs with steps of five SNPs. In ad- 
dition, we performed PCA for 100 706 microarray data be- 
fore imputation. The Plink arguments were the same as used 

previously. 

GWAS analysis of simulated data 

In this section, we aimed to perform GWAS of simulated phe- 
notypic values, whereas the genotype data were a combination 

of the CKB reference panel and after-imputed 100 706 mi- 
croarray data. First, we performed PCA of genotype data by 
using PCAone ( https:// github.com/ Zilong-Li/ PCAone ), which 

was applicable for large samples. Then, we simulated pheno- 
type data under null and alternative hypotheses, separately. 
Under the null hypothesis that none of the SNPs were as- 
sociated with the phenotype, we generated a vector of phe- 
notypic values from a standard normal distribution. Under 
the alternative hypothesis that the phenotype data was gen- 
erated from a linear regression model by using five SNPs as 
independent variables with randomly assigned effects size β. 
The causal SNPs included rs3003378 ( β = 0.02), rs6764623 
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Figure 1. The workflow of panel construction. 

( β = 0.01), rs10905649 ( β = 0.02), rs13254191 ( β = 

0.03) and rs10915307 ( β = 0.01). We used PC1 to PC5 and 

sex of the participants as the covariates to carry out GWAS 
analysis in Plink v.2.0 ( 38 ). We reported Manhattan plots, QQ 

plots, histograms and regional plot for the GWAS results. 

GWAS analysis of real phenotype data 

In this section, we performed GWAS analysis of real pheno- 
type height, while the genotype data was 100 706 microar- 
ray data before and after imputation, separately. The covari- 
ates included age, sex, sampling site and the first 10 prin- 
cipal components of the microarray data before imputa- 
tion. We used Plink v.2.0 for GWAS analysis by testing 
SNPs with MAF > 0.01, HWE P -value > 1E-06 and geno- 
type missing rate < 0.01. For the GWAS results, we de- 
fined a SNP as significant if its P -value > 5E-08. We further 
grouped these significant SNPs into different loci by sliding 
a fixed-width (1 MB) window. For two loci identified be- 
fore and after imputation, if the distance between their cen- 
ters is within 500 KB, we defined that they were a shared 

locus. 

Online imputation service 

We developed an online imputation server to offer genotype 
imputation service, which allows users to run imputation tasks 
free and safely in an easy way. For the online server, we 
provided the CKB and 1KGP as available reference panels, 
GRCh37 (hg19) and GRCh38 (hg38) as human genome as- 
sembly , Minimac v .4 ( 39 ,40 ) and Beagle v.5.2 ( 41 ) as impu- 
tation tools, and different population options. Specifically, for 
the CKB panel, Chinese is the sole population, and for the 
1KGP panel, the available populations include East Asian, 
South Asian, African, European, Admixed American and all 
populations. Users can access the server via https://db.cngb. 
org/ imputation/ . 

Results 

Data quality 

After sample-level quality control, the haplotype reference 
panel included 9964 individuals, where 9914 were from the 
CKB cohort and 50 were 1KGP Chinese. The sequencing 
depth, sex distribution, and age distribution are provided in 

Figure 2 a–c. In detail, the mean sequencing depth was 15.41 

(15.41 for CKB samples and 15.78 for 1KGP samples). There 
were 4416 males (44.32%) and 5548 females (55.68%) in the 
panel; while specifically in the CKB and 1KGP cohort, the 
percentages of males were 44.29 and 50.00%, respectively. 
The sex distribution of the CKB individuals was highly con- 
sistent with that in the entire CKB cohort (i.e. male: 41%, 
female: 59%). We also provide the number of samples re- 
cruited from each sampling site in Figure 2 d. Specifically, Hei- 
longjiang, Henan and Guangxi were the top three provinces 
with the largest recruitments. The other provinces had rela- 
tively similar sample sizes. The sex and age distributions of 
samples in each sampling site are provided in Figure 2 e. 

We provided a comprehensive comparison in terms of sam- 
ple size, averaged sequencing depth, number of variants and 

ancestries between the CKB reference panel and other four 
panels (Table 1 ). In detail, the TOPMed is the largest one with 

sample size 97 256, followed by the ChinaMAP and CKB with 

∼10 000; the extended 1KGP and NyuWa included ∼3000 

individuals. The sequencing depth is either medium coverage 
(10–30 ×) or high coverage ( > 30 ×). The TOPMed panel has 
308.11 million variants, including 286.07 million SNPs and 

22.04 million INDELs. The CKB panel had 129.74 million 

variants, including 113.73 million SNPs and 16.01 INDELs. 
The ChinaMAP, extended 1KGP, and NyuWa performed vari- 
ant filtering from database to reference panel. Specifically, the 
ChinaMAP panel involved SNPs only (59.01 million). The 
extended 1KGP panel included 70.77 million variants, while 
SNPs counted 87.21%. The NyuWa panel had 19 million 

variants. By contrast, the CKB reference panel had relatively 
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Figure 2. The sample information in the CKB reference panel. ( A ) The sequencing depth distribution of 50 1KGP samples (red) and 9914 CKB samples 
(blue). The mean sequencing depth of all 9964 samples was 15.41 ×. ( B ) The sex distribution of 50 1KGP samples (red) and 9914 CKB samples (blue). ( C ) 
The age distribution of 9914 CKB samples. ( D ) The China map colored for 10 sampling sites with number of samples. The total number of samples from 

all sampling sites was 9914. ( E ) The sex and age distributions of samples in each sampling site. 

large sample sizes and detected variants compared with other 
panels. 

In addition, we calculated three quality indicators for SNPs: 
the heterozygous:homozygous (het:hom) ratio, the transi- 
tion:transversion (Ti:Tv) ratio and the non-reference genotype 
concordance rate (NRC). The het:hom ratio is highly depen- 
dent on ancestry and the median value for Asians is ∼1.4 ( 42 ). 
The Ti:Tv ratio reflected the quality of SNP calling and the ex- 

pected ratio would be close to 2.0 for human WGS data ( 27 ). 
For the CKB reference panel, we obtained a het:hom ratio of 
1.31 and a Ti:Tv ratio of 1.97, indicating the high quality of 
genotypic data in the constructed panel. The NRC is genotype- 
aware recall (also known as sensitivity = TP / (TP + FN)). 
We used the genotype data of 50 1KGP samples with high- 
depth sequencing as actual status and their SNP calls in 

the CKB panel as the predicted data. The NRC for these 
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Table 1. The information of CKB and other reference panels 

Reference panel Sample size 
Sequencing 

depth Variants SNP INDEL Ancestries 

CKB 9964 15.41 × 129 743 542 113 731 044 16 012 498 Chinese 
ChinaMAP 10 155 40.8 × 590 10 860 59 010 860 0 Chinese 
Extended 1KGP 3202 34 × 707 68 225 61 715 567 9 052 658 Multiple ancestries 
TOPMed 97 256 > 30 × 308 107 085 286 068 980 22 038 105 Multiple ancestries 
NyuWa 2902 26.2 × 19 256 267 - - Chinese 

50 samples were calculated before and after genotype phasing 
implemented by Beagle v.5.2 ( 41 ). The average NRC increased 

from 0.9811 to 0.9927 and the improvement is more signifi- 
cant for samples with lower sequencing depth (Supplementary 
Figure S1a). 

The PCA of individuals’ genotype data in the CKB reference 
panel is provided in Supplementary Figure S1b. The first PC 

represents a latitudinal gradient, from north to south China. 
As expected, individuals in the CKB reference panel were sam- 
pled from 10 different regions. 

Novel variants and variant annotation 

We defined novel variants that were not assigned a unique 
variant accession identifier (RS number) in dbSNP (Single Nu- 
cleotide Polymorphism Database, build 154) ( 43 ). Thereby, 
the number of novel SNPs and INDELs are 50.16 million 

(44.1%) and 5.42 million (33.8%), respectively (Supplemen- 
tary Figure S2a and b). Note that, a site with different mu- 
tation variety compared to that in dbSNP (e.g. in panel: 
REF:ALT is A:-, while in dbSNP REF:ALT is CA:C) was also 

considered as a novel variant, which partially explained the 
relatively high proportion of novel sites ( 44 ,45 ). As expected, 
most novel SNPs (99.99%) and INDELs (99.15%) were rare 
variants (MAF < 0.5%). 

Based on the results of VEP annotation analysis, 55% were 
intronic variants and 26% variants located in the intergenic 
region. The subsequent categories were non-coding variants 
(15%), upstream / downstream transcript variants (12%), 
regulatory variants (4%), variants in mRNA untranslated 

regions (1%), functional variants (0.8%), transcription 

factor binding sites (0.3%) and splice-site variants (0.1%) 
(Supplementary Figure S2c). Among the functional variants, 
the most abundant class is missense mutation. Based on 

the ClinVar annotation results, there were 1604, 411, 516, 
83, 12 and nine pathogenic variants for AC = 1, AC = 2, 
AF ⇐ 0.1, AF ⇐ 1, AF ⇐ 5 and AF > 5%, respectively (Supple- 
mentary Figure S2d). Specifically, there were nine common 

pathogenic variants (i.e. alternate allele AF > 5%), includ- 
ing seven single nucleotide variation (SNV), one insertion 

(INS) and one deletion (DEL) (Table S2). The seven SNVs 
included rs7417106 (A > G, AF = 0.9468, gnomAD.EAS 
AF = 0.9429), rs5082 (G > A, AF = 0.9229, gnomAD.EAS 
AF = 0.9049), rs2280789 (A > G, AF = 0.3531, gno- 
mAD.EAS AF = 0.3285), rs2280788 (G > C, AF = 0.1182, 
gnomAD.EAS AF = 0.1117), rs3754413 (C > T, AF = 0.0737, 
gnomAD.EAS AF = 0.0731), rs72474224 (C > T, 
AF = 0.0522, gnomAD.EAS AF = 0.0854) and rs77592601 

(C > T, AF = 0.0510, gnomAD.EAS AF = 0.0479). In cor- 
respondence to these SNVs, the ClinVar annotated diseases 
included renal tubular epithelial cell apoptosis, familial hyper- 
cholesterolemia, human immunodeficiency virus type 1, rare 
genetic deafness, myeloproliferative neoplasm and premature 

rupture of membranes. The INS and DEL corresponded to 

hepatocellular carcinoma. The SIFT and PolyPhen algorithms 
provided consistent prediction of deleterious variants, that 
was a large fraction (96%) were very rare variants (AC ⇐ 2) 
(Supplementary Figure S2e). Over 72% variants can be 
predicted as deleterious by both algorithms (Supplementary 
Figure S2f). For the low-frequency and common variants 
(MAF > 0.005), 23 (0.3%) of them were annotated as 
deleterious. In particular, seven variants were predicted as 
deleterious mutations by both SIFT and PolyPhen algo- 
rithms, seven variants were uniquely annotated by SIFT and 

nine were uniquely annotated by PolyPhen (Supplementary 
Table S3). 

Imputation performance evaluation 

We compared the imputation performance of the CKB ref- 
erence panel with that of the extended 1KGP ( 6 ), TOPMed 

( 46 ), ChinaMAP ( 14 ) and NyuWa ( 47 ) from the perspective 
of number of imputed variants and imputation accuracy. We 
used 50 CKB and 50 1KGP microarray datasets as input sam- 
ples to be imputed. The corresponding high-coverage WGS 
data were used as ground truth datasets. In imputation of the 
CKB array data, the CKB reference panel provided the high- 
est number of medium-quality imputed variants (10.86 mil- 
lion), followed by the extended 1KGP (10.01 million), NyuWa 
(9.23 million), TOPMed (8.80 million) and ChinaMAP (7.98 

million) reference panels. When focusing on only high-quality 
imputed variants, we observed that the ChinaMAP reference 
panel had the greatest percentage of high-quality variants 
(86.23%), followed by CKB (84.63%), TOPMed (80.22%), 
extended 1KGP (78.50%) and NyuWa (77.32%) (Figure 3 a, 
Table 2 ). We note that the reason why the ChinaMAP pro- 
vides the smallest number of medium-quality variants is that 
it automatically filters out almost half of low-quality variants 
in the actually used panel. 

We evaluated the imputation accuracy by using three mea- 
surements: Pearson correlation coefficient ( R 

2 ), precision and 

sensitivity. The mean R 

2 of the compared reference panels 
were 0.964 (ChinaMAP), 0.961 (CKB), 0.946 (TOPMed), 
0.943 (NyuWa) and 0.926 (extended 1KGP) (Figure 3 b). 
For the ratios of true positive (TP), false positive (FP) and 

false negative (FN) variants, the ChinaMAP reached the high- 
est ratio of TP variants (94.62%), subsequently followed by 
CKB (93.71%), then followed by TOPMed (92.21%), NyuWa 
(92.18%) and extended 1KGP (90.09%). Meanwhile, the Chi- 
naMAP obtained the lowest ratios of FP (1.71%) and FN 

(3.68%) variants, and for the CKB panel, the two ratios 
were 1.93 and 4.35%, respectively. These ratios in TOPMed 

(FP: 2.35 and FN: 5.43%) and NyuWa (FP: 2.57% and FN: 
5.28%) were slightly higher than those in the CKB panel. The 
extended 1KGP reference panel had the highest ratio of FP 

(3.08%) and FN (6.85%) variants (Figure 3 c). Consequently, 
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Figure 3. The performance for imputing 50 CKB microarray data. ( A ) The numbers of high- and medium-quality imputed variants under different AF 
(allele frequency) by using different reference panels. ( B ) The histogram of imputed variants and Pearson correlation coefficients for different panels. ( C ) 
T he bo xplots of the ratios of true positiv e (TP), f alse negativ e (FN) and f alse positiv e (FP) v ariants. ( D ) T he imputation precision of reference panels. ( E ) 
The sensitivity of the reference panels. 
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Table 2. The high-quality and medium-quality imputed variants for imputing 50 microarray samples 

Reference panels Type AF ≤ 1% 1% < AF ≤ 5% AF > 5% ALL 

CKB medium-quality (M) 0 .71 0 .69 0 .27 1 .67 
high-quality (M) 1 .06 2 .10 6 .04 9 .19 
high-quality rate 0 .6000 0 .7519 0 .9570 0 .8463 

ChinaMAP medium-quality (M) 0 .44 0 .40 0 .25 1 .10 
high-quality (M) 0 .73 1 .67 4 .49 6 .88 
high-quality rate 0 .6205 0 .8052 0 .9468 0 .8623 

1KGP medium-quality (M) 0 .63 1 .01 0 .51 2 .15 
high-quality (M) 0 .38 1 .53 5 .95 7 .86 
high-quality rate 0 .3730 0 .6021 0 .9217 0 .7850 

TOPMed medium-quality (M) 0 .69 0 .60 0 .45 1 .74 
high-quality (M) 0 .66 1 .58 4 .83 7 .06 
high-quality rate 0 .4867 0 .7234 0 .9154 0 .8022 

NyuWa medium-quality (M) 0 .45 0 .88 0 .76 2 .09 
high-quality (M) 0 .74 1 .18 5 .22 7 .14 
high-quality rate 0 .6202 0 .5741 0 .8723 0 .7732 

Notes: (M) represents million. 

the ChinaMAP attained the highest precision of 98.23%, 
followed by CKB (97.98%), TOPMed (97.52%), NyuWa 
(97.29%) and extended 1KGP (96.70%). For sensitivity, the 
ChinaMAP and CKB panels reached 96.25 and 95.57%, 
respectively. Following that, the NyuWa, TOPMed and ex- 
tended 1KGP obtained sensitivities of 94.59, 94.44 and 

92.94%, respectively. The CKB reference panel achieved very 
similar R 

2 , precision and sensitivity compared to the Chi- 
naMAP, displaying an outstanding imputation performance 
(Figure 3 d and e). 

In the imputation of the 1KGP array data, we compared 

the performance of the CKB panel with that of ChinaMAP 

and TOPMed. We excluded the extended 1KGP panel as it 
had overlap samples with the array data, and also excluded 

NyuWa panel as the web server is unstable and not acces- 
sible for submitting jobs currently. The CKB reference panel 
provided the highest number of medium-quality imputed vari- 
ants (9.75 million), followed by TOPMed (7.83 million) and 

ChinaMAP (6.98 million) reference panels. When focusing on 

only high-quality imputed variants, we observed that the Chi- 
naMAP reference panel had the greatest percentage of high- 
quality imputed variants (87.92%), followed by TOPMed 

(84.46%) and CKB (84.11%) (Supplementary Figure S3a). 
For the Pearson correlation coefficient R 

2 , both the CKB and 

ChinaMAP panels achieved 0.979, while the TOPMed had a 
lower R 

2 of 0.965 (Supplementary Figure S3b). 

Imputation of 100 706 microarray data 

For the 100 706 samples with microarray data, we provided 

their sex and age distribution in each sampling site (Figure 4 a). 
Specifically, the provinces of Heilongjiang ( N = 13 131), Hu- 
nan ( N = 12 512), Zhejiang ( N = 12 042), Henan ( N = 11 

421), Sichuan ( N = 10 637) and Gansu ( N = 10 058) had re- 
cruitments > 10 000. The province of Hainan had smallest re- 
cruitment of 5794. The PCA of microarray data before impu- 
tation was provided in Figure 4 b. The PC1 represents the lat- 
itudinal gradient. The imputation-completed whole genome 
data contained 42.61 million medium-quality variants and 

17.45 million high-quality variants. To assess the imputation 

performance of the 100 706 CKB microarray data, we calcu- 
lated the Pearson correlation coefficients ( R 

2 ) of 50 CKB sam- 
ples with imputed genotype and high-depth WGS data. Note 
that we did not have WGS data for the 100 706 samples, thus 

we could not use that as the true set. As an alternative, we 
used a subset of 50 individuals with WGS data as samples 
being evaluated. Consequently, the averaged R 

2 was 0.972. 
Remember that when we simulated only these 50 microarray 
samples, the averaged R 

2 was 0.961 (Supplementary Figure 
S4). This R 

2 difference may be due to the randomity of the 
imputation algorithm in Beagle v.5.2, hidden Markov model 
( 28 ). The high imputation accuracy of 0.972 demonstrated 

that the proposed CKB reference panel is quite capable of im- 
puting extensive data. 

GWAS analysis of simulated data 

With imputed phenotype data under the null hypothe- 
sis that there were no associated SNPs, the GWAS anal- 
ysis did not identify any significant signals and the P - 
values were uniformly distributed (Supplementary Figure 
S5a and b) as expected. When the phenotype was gener- 
ated by involving the effects of SNPs, the GWAS study suc- 
cessfully discovered causal SNPs and those in high link- 
age disequilibrium (LD) (Supplementary Figure S5c). Specif- 
ically, in addition to the five randomly selected causal 
SNPs (rs3003378, rs6764623, rs10905649, rs13254191 and 

rs10915307), high-LD SNPs (e.g. rs12564681, rs11923809, 
rs7092291, rs545854, rs12123277) were also identified. The 
results of GWAS analysis with simulated data under both null 
and alternative hypotheses demonstrated the high-quality of 
genotype data. 

GWAS analysis of real phenotype data 

After filtering in SNPs with MAF > 0.01, HWE P -value > 1E- 
06, and genotype missing rate < 0.01, the numbers of SNPs in 

GWAS analysis before and after imputation were 3 038 178 

and 9 205 896, respectively. The increase in number of SNPs 
was substantial. At the significance threshold of 5E-08, the 
number of significant SNPs increased from 7971 to 16 508 

after imputation (Figure 5 , Supplementary Table S4). The 
numbers of identified significant loci for original and after- 
imputed data were 119 and 147, respectively. The shared 119 

loci included the well-known height-associated genes GDF5 

(cartilage-derived morphogenetic protein 1) ( 48 ), IGF1R 

(insulin-like growth factor 1 receptor) ( 49 ), and ADCY3 (ATP 

pyrophosphate-Lyase 3) ( 50 ). Among the additional 28 loci, 
26 (92.9%) were previously reported to be associated with 
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Figure 4. The sample information and principal component analysis of the microarray data. ( A ) The sex and age distribution of samples in each sampling 
site. The age distributions of males (females) were on the top (bottom) of the x -axis. The total number of samples from all sampling sites was 100 640, 
as 66 samples with missing sampling site information. ( B ) The principal component analysis of 100 706 samples with microarray data before genotype 
imputation. The PC1 represents a latitudinal gradient, from north to south China. Each color represents a province of sampling site. 

Figure 5. The GWAS results of height before and after genot ype imput ation. ( A ) The mirrored Manhattan plots of GWAS results based on the microarray 
data after (top) and before (bottom) genotype imputation. Genes in black are a list of shared genes identified before and after imputation. Genes in 
purple are a list of representative genes identified only after imputation. ( B ) The QQ-plot of GWAS results after genotype imputation. ( C ) The QQ-plot of 
GWAS results before genotype imputation. The genomic inflation factors ( λgc ) were 1.287 and 1.343 after and before imputation, respectively. 
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height, for example CHD8 (chromodomain helicase DNA 

binding protein 8) functioned in transcriptional regulation 

and promotion of cell proliferation ( 51 ), ZBTB20 (zinc finger 
protein 288) played a role in glucose homeostasis and post- 
natal growth ( 51 ), and PAMR1 (regeratioin-associated mus- 
cle protease homolog) might played a role in regeneration of 
skeletal muscle ( 51 ). The GWAS results with real phenotype 
indicated the high quality and credibility of the imputed data. 

Discussion 

A population-specific haplotype reference panel is a collec- 
tion of ancestral chromosome sequences that represents the 
genetic diversity of the population. A high-precision reference 
panel is the basis for population genetic analysis and preci- 
sion medicine. China has the largest population in the world 

and possesses vast amounts of genetic resources, but lacks 
a high-quality reference panel, which has hindered the devel- 
opment of genetic studies and their application in human dis- 
eases based on the Chinese population. Fortunately, in the last 
2 years, a few reference panels have been constructed for accu- 
rate genotype imputation in the Chinese population, including 
the ChinaMAP and NyuWa. 

In this work, we developed a high-resolution haplotype- 
resolved reference panel of 10 000 sequenced individuals 
from the CKB cohort and the 1KGP database. Even with 

medium sequencing depth (15.41 ×), the proposed CKB panel 
can compete with the ChinaMAP (40.80 ×) and outperform 

the extended 1KGP, TOPMed and NyuWa in imputation ac- 
curacy measured by Pearson correlation coefficient, preci- 
sion and sensitivity. From the perspective of the number of 
well-imputed variants, the CKB provided the largest num- 
ber of medium-quality variants with an information score be- 
tween 0.4 and 0.8; for high-quality variants with an informa- 
tion score > 0.8, the CKB panel obtained the second largest 
amount among all considered panels. What is more valuable is 
that we completed the genotype imputation for 100 706 CKB 

microarray data based on the constructed panel. The impu- 
tation accuracy reached as high as 0.972 and GWAS analysis 
based on the simulated data and the real phenotype height 
demonstrated the reliability of the extensive imputed data. 
This imputed dataset is the largest whole genome data for Chi- 
nese population to date and will certainly play a fundamental 
role in personalized medicine and drug development. 

However, it must be acknowledged that our study has some 
limitations. First, the sequencing depth is medium ( ∼15 ×). 
Based on our evaluation, compared to high coverage data 
( > 30 ×), medium sequencing data have comparable base qual- 
ity measured by Q20, Q30 and GC content. However, the ge- 
nomic coverage at different sequencing depth has differences, 
especially for higher coverage. In detail, for 1 ×, 4 × and 10 ×, 
the coverage differences are about 0.2, 1.0 and 18%, respec- 
tively, which might have influence on rare and novel variants 
detection. We note that the comparison results were obtained 

from two particular datasets and could not represent a general 
tendency. Second, 9914 out of 9964 (99.50%) subjects in the 
CKB reference panel were stroke cases, even though the results 
of variants detection and association analysis were promising, 
the explicit influence of potential disease haplotype is hard to 

tell and needs further investigation. 
The ultimate goal of imputing genotype data is to increase 

statistical power of genetic association studies for identify- 
ing trait-associated SNPs and to reveal the etiology of com- 

plex diseases. As the hitherto largest cohort of Chinese pop- 
ulation, CKB collected abundant clinical data, including de- 
mographic, anthropometric, biochemical, radiographic traits, 
metabolomic tests and diseases coded by ICD10 (interna- 
tional classification of diseases, v.10). There are > 1500 dis- 
eases, mostly chronic, such as heart attack, stroke, diabetes, 
cancers and so on. As a significant future work, we aim to 

perform GWAS analysis for the vast wealth of phenotypes 
and over 100 000 imputed WGS genotype data. In recent 
years, as a precision medicine tool, the polygenic risk score, 
also known as the polygenic score, has been widely used 

to predict an individual’s genetic risk of disease. The pre- 
dictive accuracy of the polygenic risk score largely relies on 

the sample sizes in discovery samples. To the best of our 
knowledge, with the after-imputed genomic data, it should 

be the largest population genetic study of the Chinese pop- 
ulation and is also comparable to numerous international ge- 
nomics research projects, for example, the UK Biobank study 
( https:// www.ukbiobank.ac.uk/ ), the All of Us research pro- 
gram ( https:// allofus.nih.gov/ ) and the biobank Japan project 
( https:// biobankjp.org/ en/ ). 

Most of the reference panels are now packaged into online 
imputation servers, such as the Michigan imputation server 
( 40 ), TOPMed imputation server ( 40 ), ChinaMAP imputa- 
tion server, NyuWa server and our developed CKB imputation 

server. These imputation servers all provide free genotype im- 
putation service by uploading to-be-imputed files and select- 
ing reference panel, population and imputation software. All 
the imputation results can be downloaded directly by click- 
ing on filenames. Even though the online server provides a 
convenient way to impute genotype data, it typically cannot 
handle large-sized files, which causes difficulties in imputing 
large-sample data. When imputing large-scale datasets, the 
individual-level reference panels are needed for offline imputa- 
tion. Since the completion of the first human genome project in 

2003 ( https:// www.genome.gov/ human- genome- project ), the 
only database that is fully publicly available is the 1000 

Genomes Database. Sharing genomic data is critical for re- 
search efficiency, translating research results into clinical ap- 
plications and ultimately improving public health. Hence, we 
appeal for the sharing of genomic and health-related data with 

controlled management. 

Data availability 

The CKB reference panel and the after-imputed > 100 000 

CKB microarray data have been deposited into CNGB 

Sequence Archive (CNSA) of China National GeneBank 

DataBase (CNGBdb) with accession number CNP0003405. 
All genotype data are shared with controlled management. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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Abstract

Background: As the SARS-CoV-2 attenuates and antibodies from the COVID-19 vaccine decline, long-term attention should
be paid to the durability of primary booster administration and the preventive effect of the second or multiple booster doses of
the COVID-19 vaccine.

Objective: This study aimed to explore the durability of primary booster administration and the preventive effect of second or
multiple booster doses of the COVID-19 vaccine.

Methods: We established a bidirectional cohort in Guizhou Province, China. Eligible participants who had received the primary
booster dose were enrolled for blood sample collection and administration of the second booster dose. A retrospective cohort for
the time of administration was constructed to evaluate antibody attenuation 6-12 months after the primary booster dose, while a
prospective cohort on the vaccine effect of the second booster dose was constructed for 4 months after the second administration.

Results: Between September 21, 2022, and January 30, 2023, a total of 327 participants were included in the final statistical
analysis plan. The retrospective cohort revealed that approximately 6-12 months after receiving the primary booster, immunoglobulin
G (IgG) slowly declined with time, while immunoglobulin A (IgA) remained almost constant. The prospective cohort showed
that 28 days after receiving the second booster, the antibody levels were significantly improved. Higher levels of IgG and IgA
were associated with better protection against COVID-19 infection for vaccine recipients. Regarding the protection of antibody
levels against post–COVID-19 symptoms, the increase of the IgG had a protective effect on brain fog and sleep quality, while
IgA had a protective effect on shortness of breath, brain fog, impaired coordination, and physical pain.

Conclusions: The IgG and IgA produced by the second booster dose of COVID-19 vaccines can protect against SARS-CoV-2
infection and may alleviate some post–COVID-19 symptoms. Further data and studies on secondary booster administration are
required to confirm these conclusions.

(JMIR Public Health Surveill 2023;9:e47272) doi: 10.2196/47272
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Introduction

Since the end of 2019, COVID-19 has been the cause of a global
pandemic, placing a heavy burden on the global public health
system [1]. With the widespread and continuous evolution of
SARS-CoV-2, many variants of concern (VOCs), such as Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and
Omicron (B.1.1.529), have emerged globally and have led to
several infection waves [2-5]. At present, the Omicron variant,
which has a higher transmissibility and immune escape ability,
is the dominant variant in the world [6]. Previous studies have
shown that the Omicron variant not only has resistance to serum
antibodies of convalescent patients but also has certain resistance
to the serum of individuals who have been fully vaccinated
against COVID-19 [7-12]. Therefore, Omicron poses a serious
threat to the control of the COVID-19 pandemic and disease
treatment.

China has administered 3.491 billion doses of the COVID-19
vaccine. The coverage rate of the first dose and second dose for
the entire population reached 92.9% and 90.6%, respectively
[13], and more than 771 million booster injections have been
administered [14]. In November 2022, China adjusted and
optimized the prevention and control measures for COVID-19.
The local epidemic quickly climaxed, which led to a depletion
of medical resources. Febrifuge, antitussive, and other
COVID-19–related drugs could not meet the exponential
increase in the number of patients in the short term, and the
more serious concern was overwhelming the availability of
hospital beds [15,16]. Therefore, long-term attention should be
paid to the preventive effect and clinical value of the second or
multiple booster doses of the COVID-19 vaccine.

In China, the most commonly used vaccines for both primary
and booster immunization against COVID-19 are inactivated
vaccines produced by the China National Biotec Group and
Sinovac Biotech. Inactivated vaccines are prepared by
cultivating SARS-CoV-2 in vitro to render the virus
noninfectious while preserving its antigenicity. Although
homologous boosting is generally considered a standard practice,
heterologous regimens have been proposed as a COVID-19
vaccine strategy to elicit stronger and broader, or longer-lasting,
immunity [17,18]. A recombinant COVID-19 vaccine using
adenovirus type 5 as a vector for inhalation was developed by
CanSino Biologics (inhalant Ad5-nCoV). Ad5-nCoV inhalation
involves the recombination of the spike glycoprotein gene of
SARS-CoV-2 into the replication-deficient human type 5
adenovirus gene, which induces an immune response in the
body. This inhalant is easy to administer and can stimulate
mucosal immunity. In a previous phase 1 trial, Ad5-nCoV
inhalation was found to be well tolerated. Further, compared
with intramuscular vaccination, aerosol vaccination could trigger
a higher ratio of neutralizing antibodies to total antibodies [19].

Few real-world studies have demonstrated the effect of a fourth
dose of heterologous booster on Omicron, especially using

inhalation vaccines. Here, we aimed to reveal the
immunogenicity and persistence of the primary booster dose
and the real-world immune effect of the secondary inhalation
booster to assess immunogenicity and persistence and prevent
sequelae of booster administration in the real world.

Methods

Study Design

Overview
A bidirectional cohort was established to investigate the efficacy
of booster administration between September 21, 2022, and
January 30, 2023, in Guiyang City, Guizhou Province, China.
The cohort was retrospectively tracked to determine the effect
and durability of primary booster administration and
prospectively followed up to assess the immunogenicity and
real-world protective effect of secondary booster heterologous
immunization, with the time of receiving the second booster as
the node.

Retrospective Study
Blood samples were collected from individuals for antibody
testing at the time of enrollment. A questionnaire covering basic
characteristics and immunization programs was required to
evaluate the durability and effectiveness of the third booster
dose.

Secondary Booster Administration
All enrolled individuals received the inhalant, Ad5-nCoV, as
part of a secondary booster immunization program (the fourth
dose).

Prospective Study
About 4 weeks (21-35 days) after receiving the second booster
dose, blood samples were collected for antibody testing. After
about 16 weeks (84-140 days), information on the infection and
sequelae of COVID-19 was collected from participants through
follow-up phone calls.

Participants
Participants were recruited by the Guizhou Center for Disease
Control and Prevention. These individuals were aged 18 years
or older and had received 3 doses of the COVID-19 vaccine
before 6 months or above. The main exclusion criteria were
individuals with a history of clinically or laboratory-confirmed
COVID-19 or SARS-CoV-2 infection within the first 6 months
of enrollment, a history of vaccination (any administration,
including COVID-19 baseline or booster dose) within the first
6 months of enrollment, or an allergy to any component of the
vaccine.

Procedures
Individuals from Guanshanhu District, Qingzhen City, and
Baiyun District of Guiyang City were recruited for this study.
All individuals completed the basic and primary booster
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immunization procedures with the inactivated vaccine from the
China National Biotec Group or Sinovac Biotech.

Eligible participants received 1 dose of inhalant Ad5-nCoV (0.1
mL per dose) through a specific atomization device. Venous
blood samples (5 mL) were collected before inhalation and 28
days after inhalation to detect immunoglobulin G (IgG) and
immunoglobulin A (IgA) antibodies against SARS-CoV-2 in
serum. Antibody detection was performed by the
receptor-binding domain antibody test kit produced by Vazyme
Biotech Co Ltd. The kit detects receptor-binding domains IgA
and IgG antibodies against SARS-CoV-2 that are produced
during incubation through an indirect enzyme-linked
immunosorbent assay (ELISA). After processing and color
development, the absorbance of the sample was measured at a
wavelength of 450 nm. The absorbance of the sample was
positively correlated with the antibody titers.

Survey Tool
Telephone follow-up was conducted with the participants to
assess their status and the timing of contracting SARS-CoV-2
after inhalation and evaluate the persistent symptoms of
post–COVID-19 using a scale. The scale comprised 49 items
and was used to assess the severity of the post–COVID-19
impact using 8 indicators: fatigue, shortness of breath, brain
fog, impaired coordination, physical pain, impaired sleep quality,
depression, and impaired quality of life. These indicators were
selected based on the common symptoms of post–COVID-19
condition (PCC), that is, a set of signs and symptoms that
emerge during or after an infection consistent with COVID-19
and are not explained by an alternative diagnosis [20].

Each item was rated as “never occurred,” “slightly affected,”
“moderately affected,” and “severely affected,” with scores of
0, 1, 2, and 3, respectively. The Cronbach α values of the 8
indicators ranged from .79 to .94, indicating acceptable
reliability [21]. The detailed questionnaire and Cronbach α
values are provided in Multimedia Appendix 1.

Statistical Analyses
The baseline characteristics are presented as means (SDs) for
continuous variables and percentages for categorical variables.
Missing values were treated and reported in all analyses.

The attenuation curves of the antibody and time were fitted
through locally weighted scatterplot smoothing (LOWESS), a
nonparametric method used in the analysis of local regression.
The sample was divided into short intervals, and weighted
polynomial fitting to the sample in each interval was conducted.
Linear regressions were constructed to fit the curve stratified
according to the preceding immune program.

Comparisons of geometric mean titers (GMTs) and geometric
mean increases (GMIs) between the groups were performed
using logarithmic conversion values. The differences in

antibodies before and after administration were compared using
a paired Student 2-tailed t test, and linear regression was used
to compare GMIs among different groups. For positive
seroconversion, the antibodies after administration should
increase by 4-fold or more, according to the literature [19,22].
A logistic regression was used to compare the seroconversion
rate. On the basis of the marginal forecast rates of each category
estimated by the regression, we used the weighted average of
the standard population to calculate the direct standardized
seroconversion rate and GMI. All test criteria to confirm the
hypothesis were bilateral, with a significance level of .05. The
adjusted α was reduced to .017 when pairwise comparisons
were made between the 3 groups.

Kaplan-Meier analysis was used to plot the uninfected curves
and cumulative hazard curves of different antibody levels, and
the log-rank test was used to compare the difference in infection
time among individuals with different levels. A multivariate
Cox proportional hazard regression model was used to adjust
for the effects of confounding factors on the results. Finally, a
linear regression model was constructed to analyze the
correlation between different sequelae scores and antibodies.

All statistical analyses were performed using R (version 4.2.0;
R Development Core Team) and Stata (version 17.0; Stata
Corporation).

Ethics Approval
The protocol was approved by the institutional review board of
the Guizhou Center for Disease Control and Prevention
(approval number Q2023-03) and was performed in accordance
with the Declaration of Helsinki and the Good Clinical Practice
guidelines. All participants provided written informed consent
before enrollment.

Results

Basic Characteristics of the Participants
A total of 327 participants who completed the vaccination and
blood sampling were enrolled in the final statistical analysis.
The specific participant entry and exit processes are outlined in
Multimedia Appendix 1. A total of 234 female and 93 male
participants were enrolled, with a mean age of 39.4 (SD 9.5)
years. All participants received 3 doses of the COVID-19
vaccine before the survey, including 2 doses for basic
immunization and 1 dose for booster immunization. Of the 327
participants, 166 received the BBIBP-CorV inactivated vaccine
(SinoBio Pharmaceutical Ltd) and 161 received the CoronaVac
inactivated vaccine produced by Sinovac Ltd. Among them,
233 participants worked in hospitals, 84 worked in nonhospital
institutions, and the remaining 10 were reluctant to report their
occupations and workplaces. Detailed information is provided
in Table 1.
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Table 1. The characteristics of participants (N=327).

ParticipantsCharacteristics

39.4 (9.5)Age (years), mean (SD)

Age (years), n (%)

63 (19.3)<30

94 (28.7)30-40

118 (36.1)40-50

52 (15.9)≥50

Sex, n (%)

93 (28.4)Male

234 (71.6)Female

Ethnicity, n (%)

279 (85.3)Han

48 (14.5)Minority

Workplacea, n (%)

233 (73.5)Hospital

84 (26.5)Nonhospital

Primary booster vaccine

166 (50.8)BBIBP-CorV

161 (49.2)CoronaVac

an=317; 10 subjects were not willing to report their occupation or workplace.

Long-Term Durability of the Antibodies After
Primary-Booster Administration (Third Dose)
Before receiving the second booster (fourth dose), we measured
the antibody levels of the participants. Approximately 6-12
months after receiving the booster, the GMT of the IgG antibody
was 95.9 (95% CI 78.8-116.7), while that of the IgA antibody
was 7.9 (95% CI 7.3-8.5). The time interval between the last
booster immunization and antibody detection was used as the
independent variable, while the antibody level was used as the
dependent variable for LOWESS segmented curve fitting. The
fitting results showed that the IgG antibody level slowly declined

with time after the primary booster, while the IgA antibody
level remained almost constant (GMT 7.9; Figure 1A and B).

We proceeded to stratify the results based on the different
immunization programs and perform linear fitting. Figure 1C
shows that the declining trend for the IgG antibody level of
participants administered the CoronaVac vaccine and those
administered the BBIBP-CorV vaccine was consistent after 6
months of immunization, with the IgG antibody titer of
CoronaVac (GMT 124.2; 95% CI 93.8-164.3) vaccine recipients
being slightly higher than that of the BBIBP-CorV vaccine
recipients (GMT 74.7; 95% CI 56.9-97.9). Figure 1D shows
that the levels and trends of the 2 are almost identical.
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Figure 1. The locally weighted scatterplot smoothing (LOWESS) curves of IgG and IgA over time during 6-12 months after primary booster administration.
(A) The curves of IgG over time. (B) The curves of IgA over time. (C) The changing curves of IgG stratified by a booster vaccine (third dose). (D) The
changing curves of IgA stratified by a booster vaccine (third dose). IgA: immunoglobulin A; IgG: immunoglobulin G.

Immunogenicity of the Second Booster (Fourth Dose)
At 28 days after receiving the inhalant vaccine as the second
booster, the GMT of the IgG antibody was 5066.5 (95% CI
4418.1-5810.1), while that of the IgA antibody was 108.6 (95%
CI 95.4-123.5). The GMI of IgG was 52.8 (95% CI 42.6-65.6),
and the seroconversion rate reached 94.5% (95% CI 92-97).
The GMI of IgA was 13.7 (95% CI 12-15.7), and the antibody
seroconversion rate was 89.3% (95% CI 85.9-92.7).

The antibody levels of individuals with different
sociodemographic characteristics and prevaccination programs
showed significant improvement after vaccination. The line

graphs of the pre and postvaccination GMTs for the IgG and
IgA antibodies of different groups are shown in Figure 2.

We explored the crude and adjusted changes in antibody (GMI
and seroconversion rate) among different groups based on age,
sex, ethnicity, workplace, and type of primary booster vaccine,
as detailed in Table 2. There was no difference in
postvaccination GMI or seroconversion of IgG antibodies among
the different demographic groups. However, for participants
who received BBIBP-CorV (adjusted rate 97.4%; 95% CI
94.9-99.9) as their initial booster, the seroconversion rate of the
IgG antibody was higher than that of those who received
CoronaVac (adjusted rate 91.4%; 95% CI 87.2-95.7) after the
secondary booster immunization.
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Figure 2. The differences of the pre- and postvaccination GMTs for the IgG and IgA antibodies of different groups. (A-E) GMTs for the IgG. (A)
Group by age. (B) Group by sex. (C) Group by ethnicity. (D) Group by type of primary booster vaccine. (E) Group by workplace. (F-J) GMTs for the
IgA. (F) Group by age. (G) Group by sex. (H) Group by ethnicity. (I) Group by type of primary booster vaccine. (J) Group by workplace. GMT: geometric
mean titer; IgA: immunoglobulin A; IgG: immunoglobulin G.
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Table 2. The distribution and difference of geometric mean increase and positive seroconversion rate of immunoglobulin G and immunoglobulin A
antibodies among groups.

Seroconversion rate, proportion (95% CI)Geometric mean increase, mean (95% CI)Variable

P valueAdjustedCrudeP valueAdjustedCrude

Immunoglobulin G

N/AN/A94.5 (92-97)N/AN/Aa52.8 (42.6-65.6)Overall

Age (years)

—92.3 (85-99.7)93.7 (87.6-99.7)—b53.6 (32.2-89.1)56.6 (33.9-94.7)<30

.1697.7 (94.5-100.9)97.9 (94.9-100.8).9452.2 (34.4-79.3)49.1 (35.1-68.6)30-40

.9992.3 (87.6-96.9)91.5 (86.5-96.6).8349.9 (34.3-72.5)48.4 (32.2-72.6)40-50

.4595.9 (90.5-101.4)96.2 (90.9-101.5).4969.8 (39.8-122.7)67.7 (41-111.9)≥50

Sex

—93.3 (88.3-98.2)92.5 (87.1-97.9)—57.6 (37.4-88.8)52 (34.6-78.1)Male

.5994.8 (91.8-97.8)95.3 (92.6-98).7352.6 (40.3-68.6)53.2 (41.2-68.6)Female

Ethnicity

—94.2 (91.5-96.9)94.3 (91.5-97)—53.5 (42.1-68)52.8 (41.9-66.5)Han

.8495 (88.3-101.7)95.8 (90.1-101.6).8556.8 (31.6-102.1)52.9 (28.6-97.9)Minority

Workplace

—94.4 (91.5-97.3)94.4 (91.5-97.4)—61.5 (47.4-79.8)61.3 (47-80.1)Hospital

.9294.1 (89-99.2)94 (88.9-99.2).0637.6 (24.2-58.4)37.9 (26-55.1)Nonhospital

Booster vaccine

—97.4 (94.9-99.9)97.6 (95.2-99.9)—65.7 (48-89.9)64.1 (48-85.6)BBIBP-CorV

.0391.4 (87.2-95.7)91.3 (86.9-95.7).0944.3 (32.4-60.7)43.3 (31.4-59.6)CoronaVac

Immunoglobulin A

N/AN/A89.3 (85.9-92.7)N/AN/A13.7 (12-15.7)Overall

Age (years)

—89.2 (81.5-96.9)88.9 (81-96.7)—13.2 (9.7-18)12.9 (9.8-16.8)<30

.3193.7 (88.8-98.6)92.6 (87.2-97.9).5814.8 (11.5-19.1)14.1 (11.2-17.7)30-40

.2582.5 (75.3-89.8)83.9 (77.2-90.6).3811.1 (8.9-14)11.8 (9.3-14.9)40-50

.2195.9 (90.3-101.5)96.2 (90.9-101.5).0720.4 (14.5-28.7)20.3 (14.6-28.2)≥50

Sex

—89.7 (83.4-95.9)89.2 (82.9-95.6)—16.9 (13-21.9)16.5 (12.6-21.5)Male

.8889.1 (85-93.2)89.3 (85.3-93.3).0712.6 (10.8-14.9)12.8 (11-14.8)Female

Ethnicity

—90.1 (86.6-93.6)90.3 (86.8-93.8)—13.8 (11.9-15.9)13.9 (12.1-16)Han

.2283.9 (73.2-94.7)83.3 (72.6-94).9413.6 (9.5-19.3)12.8 (8.6-19.2)Minority

Workplace

—89.8 (86-93.6)89.7 (85.8-93.6)—14.3 (12.2-16.7)14 (12-16.4)Hospital

.6287.8 (80.6-94.9)88.1 (81.1-95.1).3612.3 (9.4-16.1)13 (9.8-17.1)Nonhospital

Booster vaccine

—87.6 (82.5-92.8)88.6 (83.7-93.4)—13.1 (10.8-15.8)13.3 (11-15.9)BBIBP-CorV

.3690.8 (86.4-95.2)90.1 (85.4-94.7).4814.4 (11.9-17.5)14.2 (11.8-17.2)CoronaVac

aN/A: not applicable.
b—: not available.
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Real-World Protective Effect of Secondary Booster
Administration Against Infection
After the second booster, we continued to track and follow up
with the participants to derive the breakthrough infection rates.
As of January 30, 2022, we followed up with 251 participants;
the breakthrough infection rate was 60.2% (151/251).

After adjusting for confounding factors, Cox regression analysis
revealed a significant correlation between postimmunization
IgG antibody levels and breakthrough COVID-19 infection
(hazard ratio 0.60; 95% CI 0.45-0.79); the same result was
obtained for IgA antibody levels (hazard ratio 0.55; 95% CI
0.39-0.78). This result suggests that both IgG and IgA antibodies
after the second booster can provide a certain degree of
protection against COVID-19 and prevent infection. We
categorized postimmunization IgG and IgA antibodies into 3
levels, high, medium, and low, based on 25th percentile and

75th percentile. Survival and cumulative risk curves were plotted
for each level, as shown in Figure 3. Higher levels of
postimmunization IgG antibodies were associated with better
protection against COVID-19 infection and a lower cumulative
risk for vaccine recipients (Figure 3A). Similarly, higher levels
of postimmunization IgA antibodies were associated with better
protection against COVID-19 infection and a lower cumulative
risk for vaccine recipients (Figure 3B).

Kaplan-Meier curves for the risk of COVID-19 infection for
age and sex subgroups were plotted, as shown in Figure 1.
Differences between age groups were found: participants
between 30 and 40 years of age had a higher hazard risk than
other age groups. The differences were insignificant after
adjusting for other sociodemographic factors. Women appear
to have a higher risk of infection than men, but this did not reach
statistical significance (P=.051).

Figure 3. The Kaplan-Meier and cumulative hazard curve of COVID-19 infection grouped by antibody levels. (A) Curves grouped by IgG levels (low,
middle, and high). (B) Curves grouped by IgA levels (low, middle, and high). IgA: immunoglobulin A; IgG: immunoglobulin G.

Real-World Protective Effect of Secondary Booster
Administration Against Post–COVID-19 Symptoms
Finally, a questionnaire was used to evaluate the
post–COVID-19 symptoms of 151 participants who experienced
breakthrough infections, including fatigue, shortness of breath,
brain fog, impaired coordination, physical pain, impaired sleep
quality, depression, and impaired quality of life. The most

common symptoms were fatigue, impaired sleep quality, and
impaired quality of life, with mean scores of 0.46, 0.24, and
0.20, respectively.

We constructed a regression model with postimmunization
antibody levels as the independent variable and questionnaire
scores as the dependent variable. Based on the results, the GMI
levels of postimmunization IgG antibodies had a protective
effect on brain fog (odds ratio [OR] 0.56; 95% CI 0.32-0.97)
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and sleep quality (OR 0.71; 95% CI 0.53-0.96). The GMI levels
of postimmunization IgA antibodies had a protective effect on
brain fog (OR 0.68; 95% CI 0.49-0.96). Additionally,
participants who were IgA antibody seropositive after infection
had milder symptoms of shortness of breath (OR 0.81; 95% CI
0.7-0.95), brain fog (OR 0.68; 95% CI 0.55-0.83), impaired

coordination (OR 0.66; 95% CI 0.50-0.86), and physical pain
(OR 0.76; 95% CI 0.60-0.96; Figure 4).

The age-stratified protective effect of IgG and IgA after
secondary enhancement on post–COVID-19 symptoms was
reported. Unfortunately, no differences between age groups
were found, and detailed results can be seen in Figure 2.

Figure 4. The adjusted regression models of antibodies on post–COVID-19 scores. The heatmap and bar chart on the left represent the discrete and
central trends of the post–COVID-19 scores, and the scores of each subitem entered the model as a dependent variable. The 3 graphs on the top right
are the results of entering different metrics of IgG (ie, GMT, GMI, and seroconversion rate) into the regression model as independent variables. The 3
graphs on the bottom right are the results of entering different metrics of IgA (ie, GMT, GMI, and seroconversion rate) into the regression model as
independent variables. Each regression adjusted for basic sociodemographic characteristics. GMI: geometric mean increase; GMT: geometric mean
titer; IgA: immunoglobulin A; IgG: immunoglobulin G.

Discussion

Overview
Based on existing evidence, there is a significant decline in
neutralizing antibody titers 4-5 months after completion of the
routine vaccination program [23,24]. The immune protection
induced by the vaccine declines continuously with time,
highlighting the urgent need for booster vaccination to enhance
protection. According to statistics from the National Health
Commission, approximately 850 million people in China have
received their booster vaccine as of February 2023 [16]. The
administration of a third dose of the same vaccine has been
demonstrated to significantly increase neutralizing antibody
levels and effectively reduce the symptomatic infection rate of
the SARS-CoV-2 variant [25,26].

The literature suggests a decline or even disappearance of
antibody levels within a short period of 3-6 months [27-30]. In

this study, we tracked the antibody level owing to the first
booster for 6-12 months without the interference of natural
infection to evaluate long-term immunogenicity. We found that
the decline in antibody level was slow after 6 months and
maintained at a relatively low level, with a GMT of
approximately 96 for IgG and approximately 8 for IgA. In
confirmatory research, vaccine effectiveness was estimated to
decline from approximately 70% one week after the booster
dose to approximately 40% at 15 weeks or more [31].

The titers of postadministration antibodies vary according to
the vaccine type. In China, inactivated vaccines are the most
commonly used vaccines for basic and booster immunizations
owing to their safety and stability. Based on evidence from the
Chinese Center for Disease Control and Prevention, the GMTs
owing to BBIBP-CorV were 25 at 1 month and 4 at 12 months,
while those owing to CoronaVac were 20.2 and 4.1, respectively
[32]. In this study, ELISA revealed that the IgG antibody titers
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from CoronaVac were slightly higher than those from
BBIBP-CorV at 6-12 months after administration but converged
at 12 months.

Breakthrough infections have become more common with the
decline in antibody levels and the development of new VOCs
with strong immunologic escape, despite the remarkable effect
of primary boosting [33]. A fourth dose of the COVID-19
vaccine can boost cellular and humoral immunity, and the peak
responses were found to be similar to the peak responses after
the third dose [34]. According to some clinical trials, the
adenovirus vector booster dose based on an inactivated vaccine
could lead to higher neutralization antibodies than homologous
boostering [35,36]. In China, nearly 47 million residents have
now completed the sequential booster immunization since the
start of its dissemination in November 2022 [14].

Based on the available evidence, a prospective study was
conducted to evaluate heterologous secondary booster
administration. To our knowledge, this study is the first
real-world evaluation of the effectiveness of the second booster
dose in China. Herein, the inhalant Ad5-nCoV vaccine was
administered as a second booster dose. Inhalant Ad5-nCoV is
homologous to injectable Ad5-nCoV but achieves protection
through mucosal immunization through inhalation. Mucosal
immunity is a critical component of the human immune system,
with more than 90% of infections occurring in the mucosa,
which comprises numerous dendritic cells with strong T-cell
activation capacity that can induce an immune response. ELISA
to detect the serum antibodies revealed that the GMT of the IgG
antibody was 4978.2 and that of the IgA antibody was 107.8 at
28 days after inhalation. The seroconversion rates for IgG and
IgA were 93.8% and 86.9%, respectively. The antibody titers
of the primary booster against the Omicron variant were
attenuated relative to those of other virus strains, such as the
wild type and other VOCs. Therefore, the use of heterogeneous
vaccines for the second-booster procedures is a concern for the
prevention of the Omicron variant [37].

China suffered a COVID-19 epidemic between December 2022
and January 2023 owing to changes in health policies and the
impact of the Omicron variant, with a peak in cases on
December 22, 2022 [13]. In this study, we followed up with
participants for 4 months after receiving their fourth vaccine
dose to assess their real-world COVID-19 infection status. As
of January 30, 2023, 60.2% (151/251) of participants
self-reported that they had been infected with COVID-19.
Notably, IgG and IgA provided strong protection against

COVID-19 infection, as demonstrated by the high antibody
titers after the fourth dose.

In addition to infection prevention, the long-term effects of
COVID-19 are also concerning. Studies from high-income
countries suggest that vaccination may alleviate post–COVID-19
or PCC [38]. However, based on other evidence, COVID-19
vaccination is not associated with improvement in PCC [39,40].
We sought to assess some nonspecific post–COVID-19
symptoms. Based on our results, the GMI and seroconversion
rates of IgG and IgA may alleviate some of the symptoms after
secondary booster administration, including sleep quality,
shortness of breath, brain fog, impaired coordination, and
physical pain. The GMTs had no statistical relationship, which
may be explained by the insufficient statistical efficacy induced
by the small sample size. However, its clinical value is still
worth exploring. The varying levels of IgG and IgA suggest the
mechanisms of immune protection after infection, suggesting
that further tracking and research are warranted.

Our study had some limitations. First, the SARS-CoV-2
infection of participants was self-reported, which may have led
to recall and reporting biases. Further, asymptomatic patients
may not have been identified. Second, the antibody detection
method used was an ELISA quantitative assay rather than the
neutralization test. However, the results of both tests are highly
correlated according to the literature. ELISA can be used as a
substitute for the gold standard to assess immunogenicity [22].
Third, there was no control group setting without a second
booster dose for estimating the vaccine effect of the second
booster dose. Their use of antibody levels was reasonable in
accordance with previous trials, however [41]. Finally, only
follow-up data collected within approximately 1 month after
infection were reported in this study. These findings may offer
suggestions for future populations with post–COVID-19. Further
studies are needed, including appropriate control measures for
unvaccinated individuals, to confirm the trajectory of persistent
symptoms after COVID-19 vaccination.

Conclusions
The IgG and IgA antibodies did not decrease significantly but
remained at a relatively low level after administration of the
second booster dose. The antibodies generated significant
immunogenic protection against breakthrough infections and
might partially alleviate post–COVID-19 symptoms. Further
studies on secondary booster administration are needed to
validate these correlations.
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 16 

Lay Summary: 17 

The usual cardiovascular risk assessment tools use single measurements of limited traditional risk factors. Existing 18 

electronic health records (EHRs) often have abundant longitudinal measurements and a wider range of predictors 19 

available. These could not only facilitate the improvement of the prediction accuracy but also allow automatic 20 

screening when the tool is embedded within the EHR system. Machine learning approaches are known to  21 

accommodate irregular measurement records. This study, therefore, compared the performance of two machine 22 

learning models with the guideline-recommended model under real-world scenarios, indicating that: 23 

• Incorporating irregular multiple predictors with repeated measurements with simple machine learning 24 

algorithms was feasible and interpretable.  25 

• The accuracy of the risk prediction can be significantly improved, especially regarding risk reclassification. 26 

According to the risk cut-offs recommended by the current guideline, the machine learning models could 27 

allocate the participants into different risk groups more correctly than the guideline-recommended model. 28 
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 1 

Abstract 2 

Aims 3 

Existing electronic health records often have abundant but irregular longitudinal measurement risk factors available. 4 

We aim to leverage such data to improve the risk prediction of atherosclerotic cardiovascular disease (ASCVD) by 5 

applying machine learning algorithms, which can therefore allow the au tomatic screening of the population. 6 

Methods and results 7 

Totally 215,744 Chinese adults aged 40-79 without a history of CVD from an EHR-based longitudinal cohort study 8 

were included (6,081 cases). To allow the model interpretable, predictors of demographic  characteristics, medication 9 

treatment, and repeatedly measured records of lipids, glycemia, obesity, blood pressure, and renal function were 10 

used. The primary outcome was ASCVD, defined as non-fatal acute myocardial infarction, coronary heart disease 11 

death, or fatal and non-fatal stroke. The eXtreme Gradient boosting (XGBoost) machine and LASSO regression 12 

models were derived to predict the 5-year ASCVD risk. In the validation set, compared with the refitted Chinese 13 

guideline-recommended Cox model (i.e., the China-PAR), the XGBoost model had significantly highest C-statistics 14 

(0.792, the difference in C-statistics: 0.011, 0.006-0.017, P<0.001), with the similar results for LASSO regression 15 

(the difference in C-statistics: 0.008, 0.005-0.011, P<0.001). The XGBoost model demonstrated the best calibration 16 

performance (Men: Dx=0.598, P=0.75; Women: Dx=1.867, P=0.08). Moreover, the machine learning algorithms' risk 17 

distribution differed from the conventional model. The NRIs of XGBoost and LASSO over the Cox model were 18 

3.9% (1.4%-6.4%) and 2.8% (0.7%-4.9%), respectively.   19 

Conclusions 20 

Machine learning algorithms with irregular, repeated real-world data could improve cardiovascular risk prediction. 21 

They demonstrated significantly better performance for reclassification to identify the high -risk population correctly.  22 

 23 

Keywords: 24 

Prediction, Preventive Cardiology, Risk 25 
 26 

 27 
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 2 

Introduction  3 

Safe and cost-effective treatments can reduce cardiovascular risk significantly. The magnitude of treatment benefit is 4 

directly related to the pre-treatment cardiovascular risk of individual patients. To accurately determine this risk, 5 

reliable risk prediction equations must be employed. The global cardiovascular guidelines recommend various risk 6 

assessment tools to tackle the heavy burden of cardiovascular disea se (CVD), e.g., the Pooled Cohort Equation 7 

(PCE),1 the Systematic COronary Risk Evaluation (SCORE) model,2 and the Prediction for Atherosclerotic 8 

Cardiovascular Disease Risk in China (China -PAR) model.3 Though current risk prediction models using a number 9 

of traditional CVD risk factors have played an important role in CVD prevention, the predictive performanc e has yet 10 

to be satisfactory. For example, several external validation studies have demonstrated that the C-statistics of these 11 

models were only 0.65 to 0.74,4,5 and may incorrectly estimate the absolute cardiovascular risk.4,6 It is known that 12 

traditional CVD risk prediction can be enhanced through additional information gained from either new predictors 13 

or repeat measurements. In addition to traditional predictors such as age, smoking, and systolic blood pressure, new 14 

predictors from various etiological pathways (e.g., lipoprotein (a) and apolipoprotein,7,8 glucose metabolism,9,10 and 15 

renal function markers11) could also potentially improve the prediction accuracy. However, implementing traditional 16 

prediction models using all these novel predictors for CVD primary prevention in the entire population is not 17 

realistic in real-world clinical practice. Secondly, recent evidence suggests that repeated measurements of CVD risk 18 

factors in traditional prediction models could improve performance,12-14 which may capture the longitudinal 19 

information of risk factors and help explain the cardiovascular residual risk.15 But the current traditional models 20 

have limitations in considering a limited number and type of repeated predictors16, and they may overlook potential 21 

interactions among these predictors.17,18 22 

 23 

In contrast, electronic health records (EHR) can not only provide a wealth of information with repeat measurements 24 

on various predictors16 but also allow for automated screening if the risk prediction tool is embedded.19,20 However, 25 

the data structure in real-world EHR systems often differs from that of traditional cohort studies. Although new 26 

predictors may exist in subgroups of the population, the pattern of available risk factors is often irregular. For 27 
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example, patients may have a series of repeated measurements, especially for traditional CVD risk factors, but the 1 

number of repeats varies among subjects. Moreover, it is also quite common that different predictors were measured 2 

between individuals, even from the same etiological pathway. E.g., someone had information on body mass index, 3 

whereas others measured waist-hip ratio. Besides, risk factors were generally measured at different time points. 4 

Therefore, this EHR-based information remains challenging to be incorporated using conventional risk prediction 5 

models. 6 

 7 

In this case, machine learning (ML) algorithms can be a valuable alternative to handle such complex data. While 8 

evidence shows that the benefits of ML algorithms over traditional models using the same predictors were limited, it 9 

can excel in accommodating multiple predictors and handling irregular measurements, making them suitable for 10 

leveraging the rich information present in EHRs effectively.21,22 While ML has been increasingly utilized to leverage 11 

information from repeated measurements in certain hospital-based scenarios,23,24 its application in primary care for 12 

cardiovascular risk assessment remains limited.25,26 Existing studies have demonstrated that ML can enhance risk 13 

prediction,22,27 but they have not fully utilized time-to-event information or comprehensively evaluated predictive 14 

performance. Developing fixed-term survival prediction models is crucial for CVD risk assessment, as they align 15 

with the recommended risk stratification cut-offs in clinical guidelines.1-3 16 

 17 

Therefore, this study aims to investigate the improvement of CVD risk predictions by incorporating irregular 18 

repeated real-world measurements of multiple predictors using ML models. The predictive performance was then 19 

compared against the guideline-recommended traditional Cox regression model.28 20 

 21 

Methods 22 

Study design 23 

The concept of the study design is shown in Figure 1-(a). The population included in this study was from the 24 

CHinese Electronic health Records Research in Yinzhou (CHERRY) study, which was an EHR-based cohort study 25 

in Yinzhou, Ningbo (a developed area in Eastern China). A detailed description of the CHERRY stud y has been 26 
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published elsewhere.29 The inclusion criteria of this study population consisted of 1) aged between 40 to 79 years 1 

old at the entry time; 2) registered in the health information system from Jan 1 st, 2010 to Dec 31st, 2016; and 3) 2 

Chinese residents who had been living in Yinzhou for at least six months. The exclusion criteria of this study are as 3 

follows: 1) had no records of serum lipids measurements since lipid-related predictors were causally related to 4 

atherosclerotic cardiovascular disease (ASCVD); This may cause the model to be not applicable. 2) had 5 

cardiovascular disease history before entering the study. The flowchart of the inclusion and exclusion process is 6 

shown in Supplementary Figure 1. Finally, 215,744 participants were included in the analysis set, among which a 7 

random sample of 80% (about 180,000) was separated as the training set to derive the models, and the rest 8 

participants were left only for the final internal validation (Shown in Supplementary Figure 2). This study was 9 

approved by the Peking University Institutional Review Board (IRB00001052-16011). 10 

 11 

To maximize the number of repeated measurements collected, the baseline in this study was set as 1) the time when 12 

the participants registered in the system, 2) the time when participants reached 40 years old, 3) the time when the 13 

first serum lipids measurement was recorded, or 4) Jan 1 st, 2015, whichever the latest. The repeated measurements 14 

were collected from the past five years before the baseline. Participants would be followed up to the time 1) when 15 

they had their first ASCVD event (further defined in the outcomes section), 2) they were censored from following 16 

up, or 3) May 31st, 2020, whichever is the earliest.     17 

 18 

Predictors 19 

Seven common categories of cardiovascular risk factors (Shown in Figure 1-(b)) with 25 markers in total were pre-20 

identified as the pool of predictors, including demography (age, sex, education levels, settings, smoke status, and 21 

family history), lipid metabolism (total cholesterol [TC], high-density lipoprotein cholesterol [HDL-C], low-density 22 

lipoprotein cholesterol [LDL-C], triglycerides [TG], apolipoprotein A [apo A], apolipoprotein B [apo B], and 23 

lipoprotein (a) [Lp-(a)]), obesity (body mass index [BMI] and waist circumference), glucose metabolism (fasting 24 

blood glucose [FBG], diabetes at baseline, and hemoglobin A1c [HbA1c]), blood pressure (systolic blood pressure 25 

[SBP] and diastolic blood pressure [DBP]), renal function (estimated glomerular filtration rate [eGFR] and albumin 26 

creatinine ratio [ACR]), and medical treatments (antihypertension, antihyperglycemic, antihyperlipidemic treatment, 27 

and aspirin). We selected these risk factors because they were universally incorporated into cardiovascular risk 28 
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prediction,1,12,28,30-32 had likely causal relationships with ASCVD outcomes,8,9,33,34 or were closely associated with 1 

ASCVD from etiological perspectives.7,10,11,35,36 Measurements of these predictors were collected from multiple 2 

sources in the regional health system, including census data, electronic medical records (EMR), disease surveillance , 3 

chronic disease management system, and health check, etc., which were summarized in Supplementary Table 1. 4 

These records will be inherently linked to each other according to a unique and encoded identifier. Detailed data 5 

collection procedures of various data sources were described in Supplementary Method 1. The exact definitions of 6 

each medical treatment are given in Supplementary Table 2. Extreme outliers were removed according to pre-7 

specified normal ranges of key predictors (Shown in Supplementary Table 3). 8 

 9 

Considering the irregular nature of the predictors’ information available, we used a simple but effective approach to 10 

leverage these repeated measurements by summarized statistics.24,37 Standard deviation, range, and the difference 11 

between the last and first measurements were calculated as derived predictors since many studies proposed that the 12 

variability of predictors was associated with CVD.17,18,38 The numbers of measurements were also counted and 13 

included in the pool of predictors.39 Mean values of predictors were also summarized to represent the long-term 14 

average of those predictors. All the baseline and derived predictors included in this research were listed in 15 

Supplementary Table 4. 16 

 17 

Outcomes 18 

The definition of the ASCVD was consistent with the one used in the China -PAR or PCE model, which was defined 19 

as the composite outcome of non-fatal or fatal stroke (ICD-10 code: I60, I61, I63, I64), non-fatal myocardial 20 

infarction (I21, I22), and coronary heart disease death (I20-25).28 Outcomes in this study were collected from the 21 

following sources: disease surveillance, chronic disease management system , death registry, and EMR. Among those 22 

sources, the disease surveillance and death registry were recognized as the gold standard. The outcome used  the first 23 

ASCVD events that occurred after the baseline and before May 31 st, 2020. 24 

 25 

Risk prediction models 26 

Since the China-PAR model was the Chinese guideline-recommended risk assessment tool in primary care, our 27 

study selected this model as the reference to be compared. The model was modified by two different approaches in 28 
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this study to make the comparison fair: (1) the refitted China -PAR model was developed by directly replacing all the 1 

coefficients in the original model but preserving all the pre-defined terms (including all the interaction terms); (2) 2 

the recalibrated China -PAR model was developed by replacing the baseline survivals and means of linear predictors 3 

in the original model without altering any pre-defined terms and their corresponding coefficients.  4 

 5 

Two ML approaches were finally adopted in this study, which were eXtreme Gradient Boosting (XGBoost) and 6 

Least Absolute Shrinkage and Selection Operator (LASSO) regression. The choice of algorithms depends on various 7 

factors, including the nature of the data, the size of the dataset, the complexity of the problem, and the desired 8 

interpretability of the model.19 For large datasets with high dimensionality (many predictors), algorithms that can 9 

efficiently handle such data, like Random Forest, Gradient Boosting, or Deep Learning models, may be suitable.40,41 10 

Meanwhile, for CVD risk prediction, model interpretability is crucial. Simpler models such as regression-based 11 

models or decision trees are still preferred, as they can provide more transparent and easily interpretable results.19 12 

Random Forest or Gradient Boosting can also offer feature importance rankings and handle missing values without 13 

imputation. Finally, the computational cost of training the model is a consideration, especially for large datasets. 14 

Linear models and tree-based models tend to be faster to train compared to deep learning models. To  control the 15 

potential overfitting, algorithms with built-in regularization, such as Lasso Regression was considered. After 16 

exploring the performance and feasibility of the four aforementioned methods, XGBoost and LASSO regression 17 

were chosen because they have better performance and are relatively readily to be interpreted and implemented in 18 

the EHR system. The difference between the perspectives these two algorithms utilize the information of predictors 19 

will also provide a comprehensive exploration of the suitable approach to leverage the repeated measurements.42,43 20 

The importance of predictors was assessed according to the average reduction of information entropy in the 21 

XGBoost model and the absolute value of the β  coefficients in LASSO regression, which reflected the information 22 

gains or the marginal effects of predictors. Two ML classifiers were first trained in the 126,893 subjects with known 23 

outcome information at the end of the fifth year. Then, the two ML models were embedded into a Cox regression 24 

model to predict absolute 5-year risk. Hyperparameter tuning was conducted by maximizing the area under curve in 25 

the five-fold cross-validation. Grid search were iterated 100 times to acquire the optimized hyperparameter 26 

sequence.44,45 The ranges of hyperparameters were given in Supplementary Table 5.  27 

 28 
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Statistical analysis 1 

Continuous predictors were described using means and standard deviations, while categorical predictors were 2 

described using counts and percentages. The associations between predictors and ASCVD were given according to 3 

the hazard ratios of Cox proportional hazard regression adjusted for the variables from the China -PAR models. 4 

Proportions of missingness were described for each predictor. The predictors in the China -PAR models were 5 

multiple-imputed by chain equations (MICE, five imputation sets were created) to compare with the two ML 6 

models.12,46 The performance metrics were measured in each imputation set and then pooled according to Rubin’s 7 

rules.47 ML models can handle the missingness directly to preserve initial information. Details on data imputation 8 

were described in Supplementary Method 2. The performances of the models were evaluated from the following 9 

perspectives, discrimination, calibration, and reclassification. The discrimination was assessed by Harrell’s C-10 

statistics. Calibration was used to measure the coordination between predicted risk and observed risk, which was 11 

evaluated using the Hosmer-Lemeshow 𝜒2 and calibration plots.48 C-statistics of different models were compared 12 

using the approach proposed by Kang et al.49 The risk distribution by different models was also illustrated. To pool 13 

the Hosmer-Lemeshow 𝜒2 given by different imputation sets, a  Dx statistic following the F distribution was 14 

generated based on the approach proposed by Rubin et al.50 and Li et al.51 We provided the standard reclassification 15 

table. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were calculated to 16 

quantify the reclassification benefits of the ML models over the refit ted China-PAR model. The cut-offs of risk 17 

groups were selected according to the 2019 Guideline on the assessment and management of cardiovascular risk in 18 

China.3 A decision curve analysis was also conducted to illustrate the clinical implications of the ML models. The 19 

sensitivity analyses were conducted as follows: (1) to further ascertain whether the possible improvement of risk 20 

prediction was driven by leveraging the information from the repeated measurements or by simply including more 21 

baseline predictors, a  Cox regression model including all the baseline measurements of each predictor was 22 

constructed, and its performance was compared against the two ML models and the refitted C hina-PAR model; (2) 23 

the performance of recalibrated China-PAR was assessed and compared to evaluate how much improvement ML 24 

models can achieve compared with the per-guideline approach. All analyses were conducted using R version 4.0.4 25 

with a statistical significance level of P < 0.05. The XGBoost model was constructed with the xgboost package 26 

version 1.4.1.1, and the LASSO regression was conducted using glmnet package version 4.1-1. The mice package 27 

version 3.13.0 was adopted for the multiple-imputation by chain equations. 28 
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 1 

Results  2 

Basic descriptions for participants and predictors 3 

The characteristics of the 215,744 included participants were described in Table 1. Fifty-four percent of the 4 

participants were women, and the mean age was about 56.7 (SD = 9.6). The means of major risk factors for 5 

ASCVD: systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol were 134.5 mmHg, 4.9 6 

mg/dL, and 1.3 mg/dL, respectively. The average BMI was 23.3 kg/m2. Overall, 12.1% of them had diabetes at 7 

baseline. During a median of 5.4-year follow-up, 6081 individuals (2.82%) had ASCVD outcomes. The incidence 8 

rate of ASCVD was 6,178 per million person-years. Only total cholesterol and anti-hyperglycemia treatment 9 

significantly differed between derivation and internal validation datasets (Shown in Supplementary Table 6). The 10 

missing proportions of each predictor were shown in Supplementary Table 7. The number of measurements and 11 

time intervals between each measurement of key predictors for each individual was given in Supplementary Table 12 

8. The mean number of measurements of total cholesterol, SBP, BMI, and fasting glucose were 3, 2, 1, and 3, 13 

respectively.  The corresponding median time intervals between those measurements were 269, 136, 267, and 251 14 

days.  15 

 16 

The discrimination of the models  17 

In the validation set, the C statistics with the absolute differences compared with refitted China-PAR model were 18 

shown in Figure 2. The C statistics of the XGBoost model were 0.7918 (95% CI: 0.7776-0.8060) and that of 19 

LASSO regression was 0.7883 (0.7737-0.8029). The two ML models performed better than the refitted China -PAR 20 

model in discrimination (Difference in C statistics for XGBoost: 0.01134 , 0.00567-0.01700, P < 0.001; for LASSO: 21 

0.00784, 0.00453-0.01115, P < 0.001). The discrimination of the two ML models was better than the refitted China -22 

PAR model in both men and women, where the XGBoost model performed the best among men while the LASSO 23 

regression performed the best among women. The final hyperparameters in the final ML models were in 24 

Supplementary Table 9. The major structures of the final ML models were given in Supplementary Figure 3 and 25 

Supplementary Table 10. 26 

 27 
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The calibration of the models 1 

XGBoost model showed better calibration than refitted China -PAR model in both men and women (XGBoost: Dx = 2 

0.598, P = 0.75 in men and Dx = 1.867, P = 0.08 in women; Refitted China -PAR: Dx = 2.832 in men, P = 0.004 and 3 

Dx = 3.352 in women, P = 0.001) while LASSO regression was recalibrated well in men (Dx = 1.639, P = 0.11) but 4 

not in women (Dx = 1.950, P = 0.048). The calibration plots were shown in Figure 3. Although the XGBoost model 5 

slightly overestimated the risk in the highest risk group, the coordination of the predicted risks and Kaplan-Meier 6 

observed risks was much better than the LASSO model and refitted the China -PAR model, especially among low-7 

risk deciles.  8 

 9 

The clinical implications on the outcomes 10 

In the validation set, the reclassification table was shown in Table 2. By using the XGBoost model compared with 11 

the refitted China-PAR model, among 24,247 non-case individuals, there were 3,355 and 667 subjects classified into 12 

low or medium-risk by the XGBoost and the refitted China -PAR model respectively. A net quantity of 2,688 people 13 

(11.09%) was reclassified into the correct groups. Among 969 individuals who developed CVD during follow-up, 14 

XGBoost, and the refitted China -PAR model selected a similar number of high-risk subjects, i.e., 550 and 585. After 15 

taking the medium-risk group into account, China-PAR correctly selected 70 (7.22%) more case individuals. The 16 

overall net reclassification improvement (NRI) is 3.87% (1.35-6.38%). Similarly, the NRI for LASSO regression is 17 

2.78% (0.66-4.89%). By directly comparing the predicted risk against the refitted China -PAR model, the integrated 18 

discrimination improvements (IDI) of the XGBoost model and LASSO regression were 0.0174 (0.0135 -0.0212) and 19 

0.0106 (0.0081-0.0131). The risk distributions predicted by the XGBoost model and the refitted China -PAR model 20 

were illustrated in Figure 4. The risk predicted by XGBoost tended to centralize in the lower range in non -cases in 21 

both men and women, with a larger difference between the risks of cases and non-cases. The decision curve analysis 22 

(DCA) demonstrated that all three models, namely XGBoost, LASSO, and the refitted China -PAR model, exhibited 23 

favorable performance by deviating from the curves of treating all or treat ing none within the common 24 

cardiovascular risk range of 0%-20%. Moreover, the net benefit of the XGBoost model surpassed that of the refitted 25 

China-PAR model between the threshold range of 7.5% and 12.5%, while the net benefit of the LASSO regression 26 

model was superior within the range of 12.5% to 17.5% (Supplementary Figure 4). 27 

 28 
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The importance of predictors 1 

The associations between the predictors and ASCVD were presented in Supplementary Table 11 adjusted by 2 

predictors in the China -PAR model. All the predictors were included in the XGBoost model because of its random 3 

subspace sampling, while the LASSO regression selected only 78 of the total 101 predictors (i.e., baseline and 4 

summarized statistics of repeat information of 25 markers). The rank of importance was given in Supplementary 5 

Figure 5. In general, age, anti-hypertension treatment history, glucose metabolism-related predictors, lipid 6 

metabolism-related predictors, blood pressure, eGFR, and family history of ASCVD were most valued by both ML 7 

models. The importance of fasting blood glucose ranked third and fifth in the XGBoost model and LASSO 8 

regression, respectively. The novel lipid predictor, such as Apo B, ranked eighth and tenth in the two ML models, 9 

while the classic predictor, like total cholesterol, ranked only tenth and seventeenth. The importance of smoking and 10 

predictors indicating obesity were relatively lower (BMI: 16 in XGBoost and 19 in LASSO; Waist circumference: 11 

20 in XGBoost and 16 in LASSO; smoking: 18 in XGBoost and 14 in LASSO).  12 

 13 

Sensitivity analysis 14 

The Cox regression model with baseline measurements of all the predictors performed better than the refitted China -15 

PAR model, while it was still worse than the XGBoost model in the whole validation set from the perspective of 16 

discrimination (The differences of C statistics: 0.00563, 0.00118-0.01009, P = 0.01, Supplementary Table 12). Its 17 

discriminative performance was not significantly different from the LASSO regression (0.00214, -0.00088-0.00515, 18 

P = 0.17, Supplementary Table 12). The calibration plot of the Cox model with all the baseline measurements was 19 

not coordinated enough compared with the two ML models, which was not even better than the refitted China -PAR 20 

model (Dx = 2.421, P = 0.01 in men and Dx = 2.216, P = 0.02 in women, Supplementary Figure 6). Both of the ML 21 

models performed significantly better than the recalibrated China -PAR model no matter in discrimination (all P < 22 

0.001, Supplementary Table 13) or in calibration (Recalibrated China -PAR: Dx = 2.421 in men and Dx = 2.216 in 23 

women, both P < 0.001, Supplementary Figure 6).  24 

 25 

 26 
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Discussion 1 

This study used two ML approaches (XGBoost and LASSO) to leverage the existing repeated measurements in EHR 2 

data to predict 5-year atherosclerotic cardiovascular risk. Both ML models outperformed the recalibrated and even 3 

the refitted China-PAR model from the perspectives of discrimination, calibration, and reclassification, which is the 4 

model recommended by the 2019 Guideline on the assessment and management of cardiovascular risk in China .3   5 

 6 

Repeated measurements from electronic health records (EHR) offer valuable contributions to cardiovascular risk 7 

prediction. Notably, the QRISK3 model in the UK was derived from EHR data obtained from general practices' 8 

computer systems, where the standard deviation of SBP was included as a predictor12. This model stands as the first 9 

nationwide-used risk prediction model to incorporate predictors derived from repeated blood pressure  10 

measurements. Similarly, Paige et al. leveraged EHR data from the Health Improvement Network, a United 11 

Kingdom general practice electronic database, and applied a landmark model to utilize information from repeated 12 

measurements of smoking status, SBP, TC, and HDL-C, resulting in a significant improvement in C-statistic14. Our 13 

study aligns with these findings, demonstrating that incorporating repeated measurements of multiple predictors 14 

from EHRs enhances predictive performance when compared to the Cox model that only uses baseline 15 

measurements. The temporal information present in repeated measurements is of great importance. It was reflected 16 

by the time intervals between measurements and the trends or patterns observed over time. While the QResearch 17 

study and Paige et al. did not explicitly report the time intervals (or density) of measurements, Paige et al. did fit the 18 

temporal trend and dependency of repeated measurements using a multivariate linear mixed -effects model.12,14 In 19 

our study, we observed that the average time intervals between measurements of key predictors were generally less 20 

than one year (Supplementary Table 8), signifying the richness of information that can be harnessed from EHRs. 21 

The correlated predictors,22 irregularly-missing records,52, and data  with strong interaction in the EHR necessitate 22 

applying a novel modeling approach such as ML which usually utilizes high-dimensional unstructured data to 23 

enhance the predictive performance.53,54 However, it is worth noting that existing ML algorithms lack a 24 

comprehensive approach to model secular trends and dependencies in irregularly structured data. This pre sents an 25 

area for further methodological investigation to effectively harness the temporal nature of the data for CVD risk 26 

prediction.  27 
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 1 

Although it is controversial whether ML can improve cardiovascular risk prediction using only baseline 2 

measurements of limited predictors,27,55 several pieces of evidence demonstrated that predictive performance could 3 

be largely improved when predictors derived from repeated measurements were fed into ML models.25,26 For 4 

instance, Li et al. summarized the repeated measurements of blood lipid, blood pressure, and HbA1c from the EMRs 5 

of 101,110 people in a US regional healthcare system, into extremum , number of measurements, and means, etc. 6 

Then, these longitudinal-derived predictors were used in the random forest ML model, causing large increments of 7 

AUC (e.g., 0.823 to 0.902).25 Compared to those studies, our study demonstrated that: (1) By embedding XGBoost 8 

and LASSO regression algorithms into the Cox regression to leverage the time-to-event information, we found 9 

similar improvement in discrimination when evaluated by C statistics; (2) Besides the discrimination capability, our 10 

study comprehensively assessed the performance of the model from the perspectives of calibration and 11 

reclassification based on survival probabilities; (3) It is feasible to conduct CVD risk prediction using rich but 12 

irregular existing EHR data for risk stratification without extra cost for screening new markers.  13 

 14 

Under real-world scenarios, many predictors are not universally screened in the population. However, it was shown 15 

that these markers can predict cardiovascular risk. For example, the mean of fasting blood glucose presents the long-16 

term control of glucose metabolism, which was predictive for cardiovascular disease independently.10 17 

Apolipoprotein B and Lp (a) are also useful biomarkers for ASCVD.7 Poor renal function (e.g., impaired eGFR) 18 

could result in hypertension, left ventricular hypertrophy, endothelial dysfunction, dyslipidemia, and low-grade 19 

inflammation.56 In our study, these predictors were informative in predicting cardiovascular events as reflected by 20 

the importance of predictors (Supplementary Figure 5) and the structures of the models (Supplementary Figure 3 21 

and Supplementary Table 10). Making the best use of these existing biomarkers in EHR data  to enhance CVD risk 22 

prediction may change the current way of screening high-risk populations in clinical practice. Considering the 23 

irregular nature of the data, ML algorithms can be good alternatives. The ML models could accommodate residents 24 

with some unmeasured predictors flexibly. Including a predictor or its repeated measurement in the model does not 25 

necessitate requiring complete information on the whole population. 26 

 27 

The absolute increment of C-statistics in our study was 0.0113. This gain in discrimination was meaningful 28 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjdh/advance-article/doi/10.1093/ehjdh/ztad058/7318170 by guest on 01 N

ovem
ber 2023



14 
 

compared to the gains generated by established risk factors. For illustration, in the Emerging Risk Factors 1 

Collaboration study, adding C reaction protein or HLD-C into the traditional Cox model to predict ASCVD incidents 2 

will increase the C-statistics by 0.0039 or 0.0050, respectively.57 When SBP was removed from the Reynolds score 3 

in the Women’s Health Study, the change of C-statistic was 0.01.58 C-statistic was an insensitive indicator that 4 

ranges from 0.5 to 1.0. The larger the C-statistic is, the more challenging for it to be improved.59 HDL-C could only 5 

increase the C-statistic by 0.0013 in our cohort. Advised by Cook,58 the improvement of risk prediction given by the 6 

two ML models was also evaluated using NRI and IDI in this study. The reclassification table of the XGBoost model 7 

indeed indicated significant net benefit. In the validation set with 25,216 subjects, according to the cut -offs defined 8 

by the current Chinese guideline, about 4% more subjects will be allocated to proper risk groups and 9 

correspondingly receive more suitable recommendations on intervention. Assuming that the statin therapy was 10 

recommended to the high-risk population and reduced the CVD risk by 20%,60 such assessments of individuals by 11 

the XGBoost and the refitted China -PAR model could assign 4529 (17.9%) and 5398 (21.4%) patients to initiate the 12 

statin treatment and help prevent 110 and 117 CVD outcome over 5 years respectively. Correspondingly for every 41 13 

and 46 patients treated, there was 1 CVD outcome prevented by using the XGBoost and the refitted China -PAR 14 

model. This is consistent with the calibration plot where the risk predicted by the XGBoost model was more 15 

coordinated to the observed risk than refitted China -PAR model, especially among the low or intermediate-risk 16 

groups. Such consistency indicates the XGBoost model may gain the benefit under the existing risk cut -off values. 17 

Considering the large number of the low-risk population, great benefits are likely to be achieved when this model is 18 

implemented for risk screening. In the decision curve analysis, the threshold probability defined the criteria for 19 

intervention in individuals. If the estimated risk exceeded the threshold probability, in tervention would be 20 

recommended. The net benefit of the XGBoost model outperformed the refitted China -PAR model within the 21 

threshold probability range of 7.5% to 12.5%. This range aligns with the typical cut -off risk values recommended by 22 

guidelines for initiating critical important interventions, such as statin therapy.1,2 These results suggest the potential 23 

net benefit of implementing the XGBoost model based on the existing risk cut -offs. On the other hand, the risk 24 

predicted by the LASSO regression may be more suitable for use in high-risk individuals, given its larger net benefit 25 

across the range of 12.5% to 17.5%. Finally, we note that this administrative-data-based approach can enhance CVD 26 

primary prevention by offering a more accurate prediction without any extra cost for screening new markers. 27 

 28 
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In the present landscape, most risk prediction models have developed their own implementation tools, some of 1 

which are integrated into the health information system (e.g., QRISK in the UK and PREDICT in New Zea land),6,12 2 

while others are offered independently through websites or applications (e.g., PCE, SCORE2, and the China -PAR 3 

model).1,28,30 Given the nature of utilizing comprehensive information from electronic health records (EHRs), we 4 

recommend implementing the machine learning model by embedding it within the healthcare information system. 5 

This approach can also facilitate automatic population screening, enhancing the sustainability of cardiovascular risk 6 

prediction. However, unlike the traditional Cox model, the implementation of an already derived ML model is not 7 

always straightforward. Our algorithm for 5-year prediction of CVD risk involved a two-stage process. The first 8 

stage utilized ML classification algorithms, while the second stage incorporated the ML classifier into a Cox 9 

regression model to predict absolute 5-year risk. Therefore, we firmly believe that the baseline survival 10 

characteristics of local populations remain crucial for accurate absolute risk prediction. As a result, recalibration of 11 

the model may still be necessary when applying it to different populations, along with external validation to assess 12 

its performance in diverse settings. 13 

 14 

Our study also has several limitations. First, though internally validated, the ML risk prediction models derived in 15 

our study were not externally and independently validated. Our study aims not to propose and generalize the ML 16 

models to other populations but to answer a methodological question by comparing the performance of two ML 17 

approaches to the locally refitted China -PAR models. The models' relative performance was still valid since the 18 

performance was all measured by the same scale f rom the same dataset. Secondly, only two ML methods were 19 

present in this study, considering the nature and sample size of the data, the complexity of the algorithm, and the 20 

desired model interpretability. Advanced ML methods such as neural networks, can be adapted to use the data in the 21 

future.61 Thirdly, our study is based on regional data, which may not fully represent the diversity of the Chinese 22 

population nationwide. Variations in genetic background, culture, socioeconomic levels, climate, geographic 23 

features, lifestyle, and dietary patterns among different ethnic groups within the Chinese population could influence 24 

the generalizability of our findings. Nevertheless, the primary objective of our study was to demonstrate the 25 

cardiovascular predictive value of repeated measurements using machine learning models. As such, the potential 26 

limitations arising from regional data may have a limited impact on the overall conclusions of this research. 27 

Additionally, we acknowledge that the analysis set, consisting of 215,744 Chinese participants, is a  subset of the 28 
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original CHERRY study, which included 1.05 million adults. Consequently, while our findings are informative, they 1 

may not fully represent the entire population. Nonetheless, this subset reflects the curren t clinical practice where 2 

lipid measurements are commonly requested, even when using traditional guideline-recommended models. 3 

Furthermore, it is important to note that the data source for our study primarily relied on EHRs, which are generally 4 

collected from individuals seeking medical care. This approach may lead to biased representations of certain health 5 

conditions or risk factors that are more likely to be captured in clinical settings. Novel risk factors, such as 6 

apolipoproteins or eGFR, may be particularly affected by this bias, as their availability could be associated with 7 

specific patient health conditions and outcomes. However, we mitigated this concern by leveraging machine learning 8 

algorithms, which effectively handle missing data and enable us to capture valuable information for CVD risk 9 

prediction, including the association between the availability of specific markers and disease outcomes. Finally, 10 

although using summarized statistics to utilize repeated measurements is common, it is also important to model the 11 

time trend and consider the temporal dependence of the measurements from a single individual.16,24 Our study 12 

reinforces the importance of incorporating repeated measurements from EHRs in CVD risk prediction. The temporal 13 

aspect of repeated measurements adds valuable insights, but challenges remain in fully capturing this information 14 

using current ML algorithms. Future research efforts should focus on addressing these methodological limitations to 15 

unlock the full potential of EHR data for improved CVD risk assessment. While our study has several limitations 16 

listed above, we believe that our focus on assessing the cardiovascular predictive value of repeated measurements 17 

with machine learning models remains valuable and contributes to the current understanding of CVD risk 18 

assessment. 19 

 20 

In conclusion, the irregular repeated measurements in the EHR could be leveraged to improve the current 5 -year 21 

ASCVD incident risk prediction by adopting the XGBoost or LASSO regression algorithms. XGBoost model h ad 22 

the best overall performance from the perspectives of discrimination, calibration, and reclassification. 23 

Comprehensively considering the importance of the predictors in both ML models, the average level of blood 24 

glucose, renal function, and Apo B had relatively higher predictive values. Real-world repeated measurements of 25 

risk factors have the potential to provide additive value for current ASCVD risk assessment.  26 

 27 

 28 
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 6 

Figure legends 7 

Figure 1  The study design and categories of predictors 8 

(a): The cohort design of the study; (b): Predictors of seven pathways included in different approaches.  9 

Figure 2  The difference of C statistics compared with refitted China-PAR model 10 

The results were given based on the validation set of 31,544. 11 

Figure 3  Calibration plots of difference models by sexa 12 

The results were given based on the validation set of 31,544. 13 

Figure 4  Distribution of predicted risk given by the XGBoost model and refitted China -PAR model in the validation set 14 

 15 

 16 

Table 1  Characteristicsa of the study population 17 

 18 

 Overall (N = 215,744) Men (n = 100,078) Women (n = 115,666) 

Demography    

Age, y 56.70 (9.59) 57.10 (9.75) 56.35 (9.44) 

Rural 65,086 (30.34%) 30,016 (30.15%) 35,070 (30.51%) 

Smokers (Current or ever) 57,961 (26.87%) 53,861 (53.82%) 4,100 (3.54%) 

Finished High school 108,120 (50.11%) 55,576 (55.53%) 52,544 (45.43%) 

Family history of ASCVD 1,318 (0.61%) 701 (0.70%) 617 (0.53%) 

Blood pressure    

SBP, mmHg 134.45 (16.64) 134.58 (16.37) 134.32 (16.88) 

DBP, mmHg 82.63 (9.87) 83.10 (9.90) 82.18 (9.81) 

Obesity    

Waist circumference, cm 81.76 (7.94) 83.93 (7.61) 79.90 (7.73) 

BMI, kg/m2 23.31 (2.87) 23.44 (2.71) 23.21 (3.01) 

Lipid metabolism    
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Total cholesterol, mmol/L 4.90 (0.98) 4.77 (0.97) 5.01 (0.98) 

HDL-C, mmol/L 1.30 (0.34) 1.25 (0.34) 1.35 (0.33) 

TG, mmol/L 1.61 (1.09) 1.66 (1.20) 1.56 (0.99) 

LDL-C, mmol/L 2.84 (0.82) 2.77 (0.81) 2.90 (0.83) 

Apo A, mmol/L 1.22 (0.27) 1.18 (0.27) 1.26 (0.27) 

Apo B, mmol/L 0.95 (0.25) 0.95 (0.25) 0.95 (0.25) 

Lp-(a), mmol/L 4.87 (0.14) 4.60 (0.14) 5.12 (0.15) 

Glucose metabolism    

FBG, mmol/L 5.67 (1.57) 5.76 (1.72) 5.60 (1.44) 

HbA1c, % 6.86 (1.90) 6.99 (1.98) 6.73 (1.82) 

Diabetes mellitus 26,090 (12.09%) 12,364 (12.35%) 13,726 (11.87%) 

Renal function    

eGFR, mL/min/1.73m2 98.92 (15.30) 97.71 (15.28) 99.94 (15.25) 

ACR, mg/g 15.90 (45.36) 16.32 (48.91) 15.57 (42.39) 

Medication    

Anti-hypertension treatment 75,857 (35.16%) 35,590 (35.56%) 40,267 (34.81%) 

Anti-hyperlipidemia treatment 35,561 (16.48%) 15,662 (15.65%) 19,899 (17.20%) 

Anti-hyperglycemia treatment 22,847 (10.59%) 10,881 (10.87%) 11,966 (10.35%) 

Aspirin treatment 19,064 (8.84%) 9,100 (9.09%) 9,964 (8.61%) 

Outcome    

ASVCD events 6,081 (2.82%) 3,272 (3.27%) 2,809 (2.43%) 

Average follow-up time, years 5.41 (1.36) 5.41 (1.51) 5.41 (1.22) 

Incidence rate of ASCVD, per 
million person-years (95% CI) 

6178 (6177-6179) 7242 (7241-7243) 5245 (5244-5246) 

 1 
a Categorical variables were presented by counts and percentages; Continuous variables were presented by means and standard deviations. All the 2 
summarized statistics were given based on the complete sets of each predictor.  3 

 4 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/ehjdh/advance-article/doi/10.1093/ehjdh/ztad058/7318170 by guest on 01 N

ovem
ber 2023



25 
 

Table 2  Reclassification of the machine models against refitted China-PAR modela 1 
 2 

  XGBoost NRI 

(95% CI) 

IDI 

(95% CI) 
  <2.5% 2.5%-4.9% >=5% Total 

 Refitted PAR     
  

Non-case <2.5% 14,142 270 74 14,486 0.0386 0.0174 

 
2.5%-4.9% 

2,119 2,506 323 4,948 
(0.0135, 0.0638) 

(0.0135, 
0.0212) 

 >=5% 53 1,183 3,577 4,813 
  

 Total 16,314 3,959 3,974 24,247 
  

      
  

Case <2.5% 185 11 8 204 
  

 2.5%-4.9% 46 114 20 180 
  

 >=5% 1 62 522 585 
  

 Total 232 187 550 969 
  

      
  

  LASSO   

  <2.5% 2.5%-4.9% >=5% Total   

 Refitted PAR     
  

Non-case <2.5% 14,147 324 15 14,486 0.0278 0.0106 

 
2.5%-4.9% 

1,057 3,543 348 4,948 
(0.0066, 0.0489) 

(0.0081, 
0.0131) 

 >=5% 3 826 3,984 4,813 
  

 Total 15,207 4,693 4,347 24,247 
  

      
  

Case <2.5% 188 14 2 204 
  

 2.5%-4.9% 22 132 26 180 
  

 >=5% 0 41 544 585 
  

 Total 210 187 572 969 
  

 3 
aThe results were given based on the subjects who were not censored (25,216) from the validation set of 31,544.  4 
  5 
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Abstract

The transmissibility is a crucial feature for norovirus, yet its quantitative estimation

has been limited. Our objective was to estimate the basic reproduction number (R0)

of norovirus and investigate its variation characteristics. Norovirus outbreaks

reported from September 2016 to August 2021 in Beijing were analyzed. The

susceptible‐infected‐removed compartment model was established to estimate R0.

Linear regression models and logistic regression models were used to explore the

factors affecting the transmissibility of norovirus. The overall median R0 of norovirus

was estimated as 2.1 (interquartile range [IQR] 1.8–2.5), with 650 norovirus

outbreaks. The transmissibility of norovirus varied by year, outbreak setting and

genotype. The R0 of norovirus during September 2019 to August 2020 (median 2.1,

IQR 1.8–2.4) and September 2020 to August 2021 (median 2.0, IQR 1.7–2.3) was

lower than that of September 2016 to August 2017 (median 2.3, IQR 1.8–2.7)

(β = 0.94, p = 0.05; β = 0.93, p = 0.008). The R0 of norovirus for all other settings was

lower than that for kindergarten (median 2.4, IQR 2.0–2.9) (primary school: median

2.0, IQR 1.7–2.4, β = 0.94, p = 0.001; secondary school: median 1.7, IQR 1.5–2.0,

β = 0.87, p < 0.001; college: median 1.7, IQR 1.5–1.8, β = 0.89, p = 0.03; other closed

settings: median 1.8, IQR 1.5–2.0, β = 0.90, p = 0.004). GⅡ.2[P16] outbreaks had a

median R0 of 2.2 (IQR 1.8–2.7), which was higher than that for GⅡ.6[P7] outbreaks

(median 1.8, IQR: 1.8–2.0, odds ratio = 0.19, p = 0.03; GⅡ.2[P16] as reference) and

mixed‐genotype outbreaks (median 1.7, IQR: 1.5–1.8, β = 0.92, p = 0.02; mixed‐

genotype as reference). In kindergartens and primary schools, norovirus shows

increased transmissibility, emphasizing the vulnerable population and high‐risk

settings. Furthermore, the transmissibility of norovirus may change over time and

with virus evolution, necessitating additional research to uncover the underlying

mechanisms.
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1 | INTRODUCTION

Norovirus is a well‐known pathogen that causes acute gastroenteritis

(AGE) outbreaks and sporadic cases.1–3 The United States estimated

that norovirus led to 900 deaths, 110 000 hospitalizations, 470 000

emergency department visits, and 2.3 million ambulatory clinic

encounters annually,4 and 47.0% of AGE outbreaks were caused by

norovirus in 2009–2017.2 In China, norovirus accounted for a large

proportion (89.0%) of AGE outbreaks.3

Transmissibility is an important feature of infectious diseases,

and the basic reproduction number (R0) is widely used to quantify the

transmissibility of infectious diseases. R0 is the average number of

secondary cases that were generated by a primary case during the

average illness duration in a completely susceptible population. In

real‐world studies, the estimated R0 varied, and the data used were

collected in different contexts. For example, a previous study

reported a median R0 of 2.75 based on the data of more than 7000

norovirus outbreaks in the United States.2 However, a study from

China obtained a mean uncontrolled R0 of 12.2 for norovirus

outbreaks with 20 or more epidemiologically linked cases of

norovirus infection.5 Several studies estimated the R0 based on the

data at the population level, which usually obtained an R0 lower than

that in studies with outbreak data.6 One study explored the variation

in transmissibility of norovirus and showed that R0 might vary by

outbreak setting and season.2

A norovirus outbreak surveillance network was established in

Beijing in 2014, before the release of national guidelines on outbreak

investigation, prevention, and control of norovirus infections.7 The

transmissibility of norovirus might differ in various genotypes.

However, little was known about this aspect in the different

genotypes of norovirus. Furthermore, studies on the transmissibility

of norovirus have not yet been undertaken in Beijing. Therefore, we

aimed to quantify the R0 of norovirus and further explore whether its

transmissibility changes with time, genotypes, or other factors.

2 | MATERIALS AND METHOD

2.1 | Source of data

Data were obtained from the Beijing Center for Disease Control and

Prevention (CDC). Once a potential norovirus outbreak was reported,

Beijing CDC and district CDCs would conduct epidemiological

investigation, specimen collection and etiological detection, and also

guide these settings to take measures to control the outbreak.8

Detailed information about the data collection procedures of

norovirus outbreaks is shown in Figure 1.

2.2 | Inclusion and exclusion criteria of outbreaks

A norovirus outbreak was defined as an outbreak with 10 or more

epidemiologically linked AGE cases, and at least two of these cases

tested positive for norovirus on laboratory examination. AGE was

F IGURE 1 Data collection procedures of norovirus outbreaks in Beijing, China.

2 of 12 | WANG ET AL.

 10969071, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

v.29153 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [12/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



defined as the development of diarrhea (three or more loose stools

within 24 h) with or without vomiting (one or more episodes). The

norovirus outbreak data between September 1, 2016 and August 31,

2021 were obtained in our study.

In this analysis, the outbreak data comprised the daily count of

new cases, and only the incidence data before the implementation of

interventions were used to estimate the R0. In the R0 estimation, we

excluded outbreaks with no core information such as onset date,

number of susceptible persons, or time series data for analysis.

2.3 | Data collection

The information on norovirus outbreak data collection included onset

of outbreak, occurrence region, type of occurrence setting, case

number, number of susceptible populations at the start of the

outbreak, attack rate, transmission mode, norovirus genogroup and

genotype, onset date of each case involved in the outbreak, date

when the response was initiated by health department.

A surveillance year was defined as the period from September 1

to August 31 of the following year. The meteorological seasons were

divided into four categories: spring (March to May), summer (June to

August), autumn (September to November), and winter (December to

February). Three occurrence regions were classified into urban,

suburban, and outer suburbs according to their distance from the city

center and economic development level (Figure 2). Outbreak settings

were referred to as places where infectious sources were introduced

and norovirus was transmitted. As most outbreaks occurred in

schools, the school setting was subdivided into four categories:

kindergartens, primary schools, secondary schools, colleges; and

other places included companies or institutions, summer camps or

after‐school training camps, residential communities, hospitals,

events or training groups, nursing homes, child welfare homes, and

hotels. The transmission modes were categorized as person‐to‐

person contact, foodborne, waterborne, and unknown. The transmis-

sion mode of a norovirus outbreak was initially determined by the

staff in district CDCs who were responsible for field epidemiological

investigation, and further verified by experts in Beijing CDC. The time

period was divided into three phases: “before the coronavirus disease

2019 (COVID‐19) outbreak” (September 1, 2016 to December 31,

2019); “extremely strict policy due to COVID‐19” (January 1, 2020 to

June 30, 2020), during which extremely strict measures were taken,

such as city lockdown, schools were closed and implemented online

teaching, which resulted in a widespread decline in social activity; and

“strict policy due to COVID‐19 control” (July 1, 2020 to August 31,

2021), during this stage, social activity gradually began to resume, the

measures adopted were more targeted and less extensive, with the

minimum impact on the lives of the public. Attack rate was divided

into three levels (low, medium, and high) according to its distribution.

Timeliness of outbreak response was the time interval between onset

date of the first case and the outbreak reporting date, and was

classified as early, medium, and late.

F IGURE 2 The distribution of urban districts, suburban districts, and outer suburbs in Beijing, China.
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In addition, the temperature and precipitation data were

obtained from the daily observations of the National Oceanic and

Atmospheric Administration.9 Temperature was regarded as continu-

ous variable, and the precipitation was regarded as categorical

variable.

2.4 | R0 estimation

The R0 for each outbreak was calculated using the susceptible‐

infected‐removed (SIR) compartment model of infection dynamics.

This model could roughly fit the norovirus outbreak epidemic in a

relatively closed population by establishing a set of ordinary

differential equations and estimating the R0 based on the outbreak

data and maximum likelihood estimates.10 The established ordinary

differential equation was:

dS β S I= − × × ,

dI β S I γ I= × × − × ,

dR γ I= × ,

where S was the number of susceptible persons at the start of the

outbreak, and it was equal to the size of involved population. I was

the number of infected and also infectious persons. R was the

number of removed persons who was not infectious and could not be

infected in a set of time period. β was the probability that a

susceptible person would become infected after contact with an

infected person. γ was the probability that the infected person moves

out of the compartment. The SIR compartment model assumed that

the involved population was closed and homogeneous mixing. The

parameters of β and γ were estimated with time series of outbreak

data and maximum likelihood estimation.

2.5 | Regression analysis

Categorical variables are presented as counts and percentages, and

continuous variables as medians and interquartile range (IQR).

Comparisons of differences in continuous dependent variables

among groups are conducted using the Kruskal–Wallis H test and

Dunn's multiple comparisons test. To explore the factors that

affected the norovirus transmissibility, linear regression model was

fitted to the log‐transformed estimated R0, and logistic regression

model was fitted to the transmissibility outcome of three levels (high

vs. low transmissibility and medium vs. low transmissibility). The

candidate factors included year, season (or temperature and

precipitation), occurrence region, outbreak setting, transmission

mode, and genotype. We selected the genotypes that were

responsible for more than 10 norovirus outbreaks and categorized

them as GⅡ.2[P16], GⅡ.3[P12], GⅡ.4[P31], GⅡ.6[P7], GⅡ.17[P17],

GI.6[P11], mixed‐genotype, other GI, and other GⅡ. The same

variables were included in the linear regression models and logistic

regression models, and all variables were categorical except

temperature. For each variable, the group with the most norovirus

outbreaks reported was assigned as the reference group. Before

applying the linear regression model, we tested the applicable

premise. Weighted least squares were used to produce robust

estimates, accounting for heteroscedasticity and nonnormally distrib-

uted residuals. Variable selection was performed by comprehensively

considering the results of stepwise regression, full subset regression,

and professional significance analyses. The model with the lowest

Akaike information criterion (AIC) and Bayesian information criterion

(BIC) values were selected. Data sorting and analysis were performed

using Microsoft Excel and R version 4.2.1. Statistical significance was

assumed at p < 0.05.

3 | RESULTS

3.1 | Overview of norovirus outbreaks from 2016
to 2021

From September 2016 to August 2021, 738 norovirus outbreaks

were reported in Beijing, and a set of R0 was estimated with 650 ones

(88.1%, 650/738). For the 650 norovirus outbreaks, the median

outbreak size was 15 cases (IQR 12–20), and the median attack rate

was 29.3% (IQR 14.3%–40.4%).

The number of reported norovirus outbreaks varied over the

years with the highest in September 2016 to August 2017 (253,

38.9%) (Table 1). Norovirus outbreaks occurred mainly in spring (288,

44.3%) and autumn (184, 28.3%). The majority of the norovirus

outbreaks (413, 63.5%) reported in urban districts, which had a higher

attack rate (median 31.4%, IQR: 20.0%–40.6%) compared with the

other districts (suburban districts: median 23.9%, IQR: 10.4%–38.1%;

outer suburbs: median 23.0%, IQR: 8.6%–41.1%), although the

outbreak size (median 15, IQR: 12–18) was smaller than other

districts (suburban district: median 17, IQR: 13–28; outer suburbs:

median 17, IQR: 14–27). Most outbreaks occurred in schools (620,

95.4%), especially in kindergartens (288, 44.3%) and primary schools

(264, 40.6%), where outbreaks had higher attack rates (kindergartens:

median 37.5%, IQR: 28.0%–47.4%; primary schools: median 25.0%,

IQR: 12.5%–34.6%), but smaller scales (kindergartens: median 14

IQR: 11–17; primary schools: median 16 IQR: 13–24) compared with

that in secondary schools (attack rate: median 8.4%, IQR:

5.1%–16.2%; scale: median 25, IQR: 17–40) and colleges (attack

rate: median 12.4%, IQR: 1.5%–18.0%; scale: median 32, IQR:

23–43). Among the 637 outbreaks with known transmission modes,

94.2% occurred through person‐to‐person contact, 5.8% were

foodborne. Foodborne outbreaks tended to have larger outbreak

size (median 25, IQR 19–42) and lower attack rate (median 16.5%,

IQR 7.2%–26.8%). With regard to the genogroups of reported

norovirus outbreaks, 88.8% (577/650) were caused by Gll, 9.4% (61/

650) were caused by GI, and 1.8% (12/650) were caused by a

combination of GI and GⅡ. Of the 433 norovirus outbreaks whose

dual‐typing information were successfully obtained, 60.3% (261/433)
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TABLE 1 Norovirus outbreaks reported in 2016–2021 in Beijing, China.

Characteristics n (%)

Case number Attack rate (%) R0

Median (IQR) Range Median (IQR) Range Median (IQR) Range

Year

Sep 2016–Aug 2017 253 (38.9) 16 (13–23) 10–106 32.3 (14.2–42.3) 1.3–79.2 2.3 (1.8–2.7) 1.2–7.0

Sep 2017–Aug 2018 71 (10.9) 14 (11–22) 10–127 27.8 (16.7–36.2) 2.5–73.3 2.1 (1.8–2.5) 1.3–4.7

Sep 2018–Aug 2019 169 (26.0) 15 (12–21) 10–155 23.9 (12.1–37.5) 1.6–71.4 2.0 (1.7–2.4) 1.1–5.7

Sep 2019–Aug 2020 57 (8.8) 14 (11–17) 10–77 32.3 (23.8–38.5) 0.6–72.5 2.1 (1.8–2.4) 1.4–6.0

Sep 2020–Aug 2021 100 (15.4) 15 (12–18) 10–92 28.2 (16.0–41.7) 0.5–76.5 2.0 (1.7–2.3) 1.4–5.4

Season

Spring 288 (44.3) 15 (12–21) 10–107 28.8 (12.5–40.5) 0.5–79.2 2.1 (1.8–2.6) 1.2–6.0

Summer 77 (11.9) 15 (12–25) 10–61 27.7 (13.9–40.4) 1.4–73.1 2.2 (1.7–2.5) 1.1–7.0

Autumn 184 (28.3) 15 (12–18) 10–155 30.9 (16.8–40.1) 0.6–76.5 2.1 (1.8–2.5) 1.2–6.0

Winter 101 (15.5) 15 (12–19) 10–127 28.6 (16.9–40.0) 3.0–78.6 2.1 (1.7–2.5) 1.2–5.8

Occurrence region

Urban district 413 (63.5) 15 (12–18) 10–145 31.4 (20.0–40·6) 0.5–78.6 2.1 (1.8–2.6) 1.1–6.0

Suburban district 197 (30.3) 17 (13–28) 10–155 23.9 (10.4–38.1) 1.3–79.2 2.0 (1.7–2.5) 1.3–7.0

Outer suburbs 40 (6.2) 17 (14–27) 10–67 23.0 (8.6–41.1) 3.0–57.6 2.1 (1.6–2.4) 1.2–5.8

Outbreak setting

Kindergarten 288 (44.3) 14 (11–17) 10–48 37.5 (28.0–47.4) 6.1–79.2 2.4 (2.0–2.9) 1.4–7.0

Primary school 264 (40.6) 16 (13–24) 10–155 25.0 (12.5–34.6) 1.5–72.5 2.0 (1.7–2.4) 1.2–5.0

Secondary school 56 (8.6) 25 (17–40) 10–92 8.4 (5.1–16.2) 0.5–42.3 1.7 (1.5–2.0) 1.2–3.0

College 12 (1.9) 32 (23–43) 10–61 12.4 (1.5–18.0) 0.6–29.0 1.7 (1.5–1.8) 1.4–2.0

Other closed settings 30 (4.6) 16 (14–25) 10–107 14.1 (8.7–25.0) 1.4–55.0 1.8 (1.5–2.0) 1.1–3.4

Transmission mode

Person‐to‐person contact 600 (92.3) 15 (12–19) 10–155 29.8 (15.0–40.7) 0.5–79.2 2.1 (1.8–2.6) 1.1–7.0

Foodborne 37 (5.7) 25 (19–42) 11–107 16.5 (7.2–26.8) 1.4–72.5 1.9 (1.7–2.1) 1.4–3.2

Unknown 13 (2.0) 14 (11–23) 10–31 33.3 (21.2–35.9) 4.6–78.6 2.3 (1.9–3.0) 1.4–3.8

Genogroup

GI 61 (9.4) 16 (13–24) 10–145 22.6 (11.6–29.8) 0.6–47.2 1.9 (1.7–2.1) 1.4–5.7

GII 577 (88.8) 15 (12–19) 10–155 30.9 (15.3–41.7) 0.5–79.2 2.1 (1.8–2.6) 1.1–7.0

GI and GII 12 (1.8) 17 (12–21) 10–80 12.0 (7.7–17.1) 3.0–39.3 1.6 (1.5–1.7) 1.4–3.4

Genotype

GⅡ.2[P16] 261 (60.3) 15 (12–19) 10–155 32.5 (16.1–43.2) 1.3–79.2 2.2 (1.8–2.7) 1.4–6.0

GⅡ.3[P12] 22 (5.0) 14 (13–17) 10–30 42.7 (21.5–49.5) 13.0–76.5 2.3 (1.9–2.6) 1.6–3.2

GI.6[P11] 19 (4.4) 17 (15–26) 11–145 19.5 (13.3–26.7) 3.3–34.3 1.9 (1.8–2.1) 1.4–3.6

GⅡ.17[P17] 19 (4.4) 20 (12–28) 10–77 14.3 (8.4–30.0) 1.4–51.7 1.9 (1.5–2.2) 1.3–3.8

GⅡ.6[P7] 16 (3.7) 13 (11–26) 10–55 28.6 (15.5–35.4) 8.3–50.9 1.8 (1.8–2.0) 1.4–3.6

GⅡ.4[P31] 13 (3.0) 14 (11–16) 10–27 29.0 (21.4–32.3) 9.2–44.1 2.1 (2.0–2.6) 1.7–3.2

Mixed genotype 29 (6.7) 17 (12–24) 10–127 16.4 (9.8–33.3) 1.6–59.3 1.7 (1.5–1.8) 1.3–3.6

Other genotypes 54 (12.5) 16 (13–25) 10–92 24.5 (11.1–33.1) 0.6–64.9 2.0 (1.7–2.4) 1.3–5.7

(Continues)
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were caused by GⅡ.2[P16]. Outbreaks size of GⅡ.17[P17] (median 20,

IQR: 12–28) was higher than that of other six genotypes in Table 1,

but its attack rate was lower (median 14.3%, IQR: 8.4%–30.0%).

When extremely tight policy against COVID‐19 (offline

classroom teaching was suspended) was enacted in the first half

of 2020, only five norovirus outbreaks were reported, which

decreased by 96.0% compared to the average number of reported

norovirus outbreaks during the same period in the previous 3

years (125). When more targeted and less extensive measures

were taken since July 2020, the reporting of norovirus

outbreaks gradually rebounded (Table 1). However, only a slight

difference was observed in the final outbreak size and attack rate

among the three phases. The classification of attack rate was

defined as low (≤30%), medium (30%–50%), and high (>50%). Low

attack rate outbreaks tended to have large scales. Response

timeliness was classified as early (≤1 day), medium (1–3 days), and

late (>3 days).

3.2 | The estimated R0 epidemiological features
and univariable analysis

The overall median R0 was 2.1 (IQR: 1.8–2.5), and the range was

1.1–7.0. The estimated R0 values for outbreaks of different

characteristics are shown in Table 1. The scatter distribution of R0

and the comparison of differences in univariable analysis was shown

in Figure 3.

With regard to the year, the median R0 for norovirus outbreaks

reported from September 2016 to August 2017 (median 2.3, IQR:

1.8–2.7) was slightly higher than that of September 2018 to August

2019 (median 2.0, IQR: 1.7–2.4) and September 2020 to August

2021 (median 2.0, IQR: 1.7–2.3) (p < 0.001 and p = 0.03, respectively).

The R0 for norovirus outbreaks in suburban districts (median 2.0, IQR:

1.7–2.5) was lower than that in urban districts (median 2.1, IQR:

1.8–2.6) (p = 0.005). In terms of the outbreak setting, the R0 for

kindergartens (median 2.4, IQR: 2.0–2.9) was higher than that for

other kinds of schools (primary school: median 2.0, IQR: 1.7–2.4;

secondary school: median 1.7, IQR: 1.5–2.0; college: median 1.7, IQR:

1.5–1.8) and closed settings (median 1.8, IQR: 1.5–2.0) (p < 0.001).

For transmission mode, R0 of norovirus outbreaks with person‐to‐

person contact mode (median 2.1, IQR: 1.8–2.6) was higher than that

of foodborne ones (median 1.9, IQR: 1.7–2.1) (p = 0.04). For the

genogroup, the GⅡ norovirus outbreaks had higher R0 (median 2.1,

IQR: 1.8–2.6) than that of GI norovirus outbreaks (median 1.9, IQR:

1.7–2.1) (p = 0.003), and also GI and GⅡ outbreaks (median 1.6, IQR:

1.5–1.7) (p < 0.001). The R0 for GⅡ.2[P16] outbreak (median 2.2, IQR:

1.8–2.7) was higher than that of GⅡ.17[P17] outbreak (median 1.9,

IQR: 1.5–2.2) (p = 0.04) and mixed‐genotype ones (median 1.7, IQR:

1.5–1.8) (p < 0.001). R0 distribution was different among groups of

attack rate (p < 0.001). R0 of low attack rate outbreaks (median 1.8,

IQR: 1.6–2.1) was lower than that of medium attack rate ones

(median 2.4, IQR: 2.1–2.8; p < 0.001) and high attack rate ones

(median 3.2, IQR: 2.7–3.6; p < 0.001). Response timeliness of

outbreaks was also related with R0 distribution (p < 0.001). R0 of

TABLE 1 (Continued)

Characteristics n (%)

Case number Attack rate (%) R0

Median (IQR) Range Median (IQR) Range Median (IQR) Range

Time period

Before COVID‐19 (Sep
2016–Dec 2019)

547 (84.1) 15 (12–21) 10–155 29.4 (14.2–40.4) 0.6–79.2 2.1 (1.8–2.6) 1.1–7.0

Extremely strict policy due
to COVID‐19
(Jan–Jun 2020)

3 (0.5) 14 (12–23) 10–31 33.3 (25.1–33.3) 16.8–33.3 1.9 (1.8–2.0) 1.7–2.1

Strict policy due to
COVID‐19 (Jul
2020–Aug 2021)

100 (15.4) 15 (12–18) 10–92 28.2 (16.0–41.7) 0.5–76.5 2.0 (1.7–2.3) 1.4–5.4

Attack rate

Low (≤30%) 336 (51.7) 17 (13–29) 10–155 15.0 (9.1–23.9) 0.5–29.8 1.8 (1.6–2.1) 1.1–3.4

Medium (30%–50%) 256 (39.4) 13 (12–16) 10–38 38.7 (34.3–44.3) 30.0–50.0 2.4 (2.1–2.8) 1.6–5.8

High (>50%) 58 (8.9) 17 (14–19) 10–46 56.8 (53.9–62.0) 50.9–79.2 3.2 (2.7–3.6) 1.6–7.0

Response timeliness

Early (≤1 day) 244 (37.5) 15 (12–19) 10–127 30.8 (14.9–42.2) 0.5–79.2 2.3 (1.9–2.8) 1.3–6.0

Medium (1–3 days) 297 (45.7) 15 (12–21) 10–155 28.9 (14.3–39.0) 1.3–76.5 2.1 (1.8–2.5) 1.1–7.0

Late (>3 days) 109 (16.8) 15 (12–20) 10–107 28.6 (14.2–39.3) 0.6–78.6 1.9 (1.6–2.3) 1.2–3.8

Abbreviation: IQR, interquartile range.
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F IGURE 3 Scatter distribution of the estimated R0 (with median and interquartile range) and comparison of R0 between groups by
characteristics of (A) year, (B) occurrence region, (C) outbreak setting, (D) transmission mode, (E) genogroup, (F) genotype, (G) attack rate,
(H) response timeliness. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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outbreaks with early response (median 2.3, IQR: 1.9–2.8) was higher

than that of medium response outbreaks (median 2.1, IQR: 1.8–2.5;

p < 0.001) and late response ones (median 1.9, IQR: 1.6–2.3;

p < 0.001). No statistical difference was found in the R0 among the

groups in terms of season and time period.

3.3 | Multivariable analysis by linear regression and
logistic regression models

R0 was classified as three levels: low (R0 < 2.0), medium

(2.0 ≤ R0 < 2.6), and high (R0 ≥ 2.6), corresponding to the low, medium,

and high transmissibility in logistic regressionanalysis. Low transmis-

sibility group was the control group.

Several factors (year, occurrence region, outbreak setting,

genogroup, genotype, transmission mode, attack rate, response

timeliness, temperature, precipitation) were included in the linear

regression model; among them, year, occurrence region, outbreak

setting, genotype, attack rate and response timeliness were selected

in the final model (AIC = −1279.6; BIC = −1172.2) (Table 2).

The R0 for norovirus outbreaks reported from September 2019

to August 2020 (median 2.1, IQR: 1.8–2.4; β= 0.94, p = 0.05) and

September 2020 to August 2021 (median 2.0, IQR: 1.7–2.3; β = 0.93,

p = 0.008) was lower than that of September 2016 to August 2017

(median 2.3, IQR: 1.8–2.7). No statistical significance was observed in

the R0 for that of September 2017 to August 2018 (median 2.1, IQR:

1.8–2.5) and September 2018 to December 2019 (median 2.0, IQR:

1.7–2.4), compared with that for the September 2016 to August

2017; these findings were also supported by the results of logistic

regression model. The R0 for norovirus outbreaks that occurred in

outer suburbs (median 2.1, IQR: 1.6–2.4) was lower than that in

urban districts (median 2.1, IQR: 1.8–2.6; β = 0.93, p = 0.01) in linear

regression analysis, but the logistic regression model showed no

statistical significance of R0 for outbreaks occurred in suburban

districts and outer suburbs compared with that of urban district. The

variations in R0 by outbreak setting was obvious, with a lower R0 of

norovirus in all other settings (primary school: median 2.0, IQR:

1.7–2.4; secondary school: median 1.7, IQR: 1.5–2.0; college: median

1.7, IQR: 1.5–1.8; other closed settings: median 1.8, IQR: 1.5–2.0)

compared with that in kindergartens (median 2.4, IQR: 2.0–2.9)

(primary school: β = 0.94, p = 0.001; secondary school: β = 0.87,

p < 0.001; college: β = 0.89, p = 0.03; other closed settings: β = 0.90,

p = 0.004).

For outbreak genotype, mixed genotype outbreaks had a median

R0 of 1.7 (IQR: 1.5–1.8), which was lower than that of GⅡ.2[P16]

outbreaks (median 2.2, IQR: 1.8–2.7) (β = 0.92, p = 0.02), but no

statistical significance was found for other groups (GⅡ.3[P12]: median

2.3, IQR: 1.9–2.6; GI.6[P11]: median 1.9, IQR: 1.8–2.1; GⅡ.17[P17]:

median 1.9, IQR: 1.5–2.2; GⅡ.6[P7]: median 1.8, IQR: 1.8–2.0;

GⅡ.4[P31]: median 2.1, IQR: 2.0–2.6) in linear regression analysis.

In the logistic regression model, GⅡ.6[P7] outbreaks also had a lower

R0 (median 1.8, IQR: 1.8–2.0) compared with that of GⅡ.2[P16]

outbreaks (medium vs. low transmissibility: odds ratio [OR] = 0.19,

p = 0.03; high vs. low transmissibility: OR = 0.15, p = 0.05). Compared

with low attack rate outbreaks (median 1.8, IQR: 1.6–2.1), R0 of

medium attack rate outbreaks (median 2.4, IQR: 2.1–2.8) and high

attack rate ones (median 3.2, IQR: 2.7–3.6) was higher (β = 1.27,

p < 0.001; β = 1.60, p < 0.001, respectively), which was also supported

by the logistic regression model. As for the response timeliness of

outbreaks, medium response outbreaks (median: 2.1, IQR: 1.8–2.5)

and late response ones (median 1.9, IQR: 1.6–2.3) had lower R0

compared with the early ones (median 2.3, IQR:1.9–2.8) (β= 0.93,

p < 0.001; β = 0.84, p < 0.001, respectively), and this result was also

supported by the logistic regression model.

4 | DISCUSSION

The key epidemiological characteristics of norovirus outbreaks from

September 2016 to August 2021 in Beijing were largely unchanged,8

predominantly reported in the spring season, affecting kindergartens

and primary schools, as well as urban areas, and were transmitted via

person‐to‐person contact. GⅡ remains the primary genogroup

responsible for norovirus outbreaks. The emergence of GⅡ.2[P16]

norovirus since 2016 resulted in a significant rise in AGE outbreaks in

Beijing, and it remains the dominant strain in recent years. The most

common setting of norovirus outbreak in Beijing was in schools,

which was quite different from that in some countries, where

norovirus outbreaks mainly occurred in long‐term care facilities or in

hospitals. This could be related to some reasons: first, underreporting

might exist in hospitals, for outbreaks of nosocomial infections are

managed by other health administrative department and are usually

not reported to the CDC. Second, there are cultural differences

regarding elderly care between China and some other countries.

Chinese seniors prefer to be taken care of at home, rather than go to

a nursing home. Third, the surveillance work is focused on schools

since 2014, and CDCs work with education department to conduct

extensive training on outbreak reporting, resulting in improved

reporting practices. But this kind of training is not carried out in

other kind of settings. Hence, the reporting bias might also exist.

In this study, we conducted quantitative estimation on transmis-

sibility of norovirus, which could add evidence to the understanding

of norovirus and guide the prevention and control work. The

estimated R0 was around 2.1, which was similar to the R0 value

calculated by other studies with a data set of many outbreaks.2,11

One study used the data of 75 outbreaks that occurred in hospitals

and long‐term care facilities in England in 2002–2003, and obtained

the R0 values of 2.7 in long‐term care facilities and 1.3 in hospitals.11

Another study estimated an R0 of 2.7, with more than 7000 norovirus

outbreaks reported from 2009 to 2017 in various settings (mainly

long‐term care facilities) in the United States.2 The estimated R0 of

this study was lower than that of some studies which concluded from

a single norovirus outbreak.12,13 For example, one study applied the

data of a norovirus outbreak involving 360 cases, and got an R0 of

8.32.13 Such high‐estimated R0 was mainly related to the outbreak

data applied, which usually involved a large number of cases and
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TABLE 2 Factors affecting the transmissibility of norovirus through establishing linear regression model and logistic regression model.

Characteristics
Estimated log‐linear change
in R0 (95% CI) p Value

OR (95% CI) of medium
VS. low R0 gr p Value OR of R0 ≥ 2.6 (95% CI) p Value

Intercept 2.22 (2.11–2.34) <0.001 1.13 (0.61–2.09) 0.69 0.63 (0.28–1.40) 0.26

Year

Sep 2016–Aug 2017 Referent Referent Referent

Sep 2017–Aug 2018 0.96 (0.91–1.02) 0.17 1.12 (0.55–2.30) 0.75 0.73 (0.27–1.95) 0.53

Sep 2018–Aug 2019 0.97 (0.92–1.01) 0.12 0.80 (0.46–1.41) 0.45 0.56 (0.26–1.18) 0.13

Sep 2019–Aug 2020 0.94 (0.88–1.00) 0.05 0.56 (0.26–1.22) 0.15 0.29 (0.10–0.82) 0.02

Sep 2020–Aug 2021 0.93 (0.89–0.98) 0.008 0.55 (0.28–1.06) 0.07 0.24 (0.10–0.59) 0.002

Occurrence regiona NA NA NA NA

Urban district Referent

Suburban district 0.98 (0.95–1.02) 0.37

Outer suburbs 0.93 (0.87–0.98) 0.01

Occurrence setting

Kindergarten Referent Referent Referent

Primary school 0.94 (0.90–0.97) 0.001 0.78 (0.49–1.25) 0.31 0.41 (0.22–0.76) 0.004

Secondary school 0.87 (0.82–0·92) <0.001 0.34 (0.14–0.80) 0.01 0.32 (0.08–1.29) 0.11

Collegeb 0.89 (0.81–0.99) 0.03 0 (0–0) 0 0 (0–0) 0

Other closed settings 0.90 (0.84–0.97) 0.004 0.73 (0.27–1.95) 0.53 0.50 (0.09–2.77) 0.43

Genotype

GⅡ.2[P16] Referent Referent Referent

GⅡ.3[P12] 0.94 (0.86–1.03) 0.20 0.92 (0.29–2.93) 0.89 0.64 (0.14–2.93) 0.56

GⅡ.4[P31] 1.09 (0.97–1.23) 0.14 1.76 (0.42–7.40) 0.44 3.28 (0.52–20.64) 0.21

GⅡ.6[P7] 0.94 (0.85–1.03) 0.20 0.19 (0.04–0.82) 0.03 0.15 (0.02–1.04) 0.05

GⅡ.17[P17] 0.99 (0.91–1.08) 0.82 0.54 (0.14–2.04) 0.36 0.49 (0.06–4.07) 0.51

GⅠ.6[P11] 1.01 (0.92–1.10) 0.89 0.57 (0.17–1.97) 0.38 0.65 (0.10–4.13) 0.65

other GⅠ 1.00 (0.94–1.07) 0.97 0.73 (0.31–1.75) 0.49 0.64 (0.17–2.51) 0.53

other GⅡ 0.99 (0.95–1.02) 0.46 1.03 (0.63–1.70) 0.89 1.01 (0.53–1.94) 0.97

Mixed genotype 0.92 (0.85–0.99) 0.02 0.24 (0.07–0.80) 0.02 0.39 (0.07–2.04) 0.26

Attack rate

Low (≤30%) Referent

Medium (30%–50%) 1.27 (1.22–1.32) <0.001 5.68 (3.54–9.09) <0.001 21.97 (11.09–43.53) <0.001

High (>50%) 1.60 (1.48–1.72) <0.001 12.65 (2.61–61.27) 0.002 336.94 (65.80–1725.35) <0.001

Response timeliness

Early (≤1 day) Referent

Medium (1–3 days) 0.93 (0.90–0.96) <0.001 0.68 (0.43–1.07) 0.10 0.32 (0.18–0.58) <0.001

Late (>3 days) 0.84 (0.81–0.88) <0.001 0.42 (0.23–0.79) 0.007 0.05 (0.02–0.13) <0.001

Note: Bold values indicate statistical significance.

Abbreviations: CI, confidence interval; OR, odds ratio.
aVariable of occurrence region was not selected in the final model in the logistic regression analysis.
bFor 12 norovirus outbreaks occurred in college which were reported in Beijing during September 2016 and August 2021, R0 was all lower than 2.

WANG ET AL. | 9 of 12

 10969071, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

v.29153 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [12/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



were special in epidemiological characteristic; hence, publication bias

might have existed. Another study in China, identified that the R0

could be as high as 12.2,5 which was close to the transmissibility of

measles.14 This could be also related to the outbreak data applied

(number size ≥20), model structure established (considering the

transmissibility of asymptomatic cases), and parameter setting.

However, outbreaks with <20 cases were more common in actual

norovirus surveillance15,16; and information on asymptomatic cases in

most outbreaks were difficult to obtain during field investigations.

Therefore, we assume this study might overestimate the transmissi-

bility of norovirus. The available evidence suggests that R0 based on

the norovirus outbreak data was higher than that calculated using the

community surveillance data,6 and the R0 of our study is similar to

that of the community surveillance data. It might be due to the fact

that the data we utilized encompassed numerous outbreaks spanning

a 5‐year timeframe. The spread of norovirus reflected by this

outbreak data set was closer to the situation in community

population, compared with just a single outbreak. Meanwhile, the

underestimation of R0 might exist in our study, and it could be due to

two reasons. First, the number of susceptible populations at the start

of an outbreak was difficult to determine accurately, and it was

usually determined by experienced investigators in district CDCs.

Normally, people in contact with cases in a confined space are

regarded as susceptible. However, some people might be immune to

norovirus infections17; therefore, we overestimated the susceptible

population and underestimated the R0. Another reason may be that

some infection cases were not recognized or involved in the outbreak

data set. The case definition for norovirus outbreaks only included

symptomatic cases and excluded cases with diarrhea less than three

times a day and asymptomatic infections. This led to the

misclassification of infected persons as uninfected and underestima-

tion of R0. These were part of the limitations of our study; we could

optimize it by collecting more information of the susceptible

population and increasing the surveillance sensitivity.

Some characteristics were identified to affect the transmissibility

of norovirus (year, occurrence region, outbreak setting, genotype,

attack rate and response timeliness). The R0 of norovirus showed a

decreasing trend in recent 2 years (September 2019 to August 2020

and September 2020 to August 2021), compared with that of

September 2016 to August 2017. This finding could be due to the

enhancement of population immunity after infection. But it was

merely one explanation, and additional time‐dependent factors might

affect the fluctuation of R0, necessitating further study to explore.

Outbreaks in urban districts had a slightly higher transmissibility

compared with those in outer suburbs, which might be related to the

large population density in urban districts. The variation in R0 values

among the outbreak settings were obvious. Outbreaks in kindergar-

tens had the highest transmissibility, followed by primary schools,

whereas the transmissibility in secondary schools, colleges, and other

closed settings slightly varied. This variation was due to the different

age groups and various characteristics of population involved in these

settings. Kids were more active and unconstrained, and had a higher

frequency of contact with peers. In addition, children were more

vulnerable to norovirus infection. Therefore, it was understandable

that outbreaks occurred in pediatric group had the highest

transmissibility. A similar trend was observed in another study: for

schools, kindergartens have the highest transmissibility, followed by

primary schools.5 Hence, priorities should be set for school settings at

lower ages. Our study found GⅡ.2[P16] norovirus was more

transmissible than GⅡ.6[P7] and the mixed‐genotype norovirus, but

the mechanism needs to be further studied. Available study on the

transmissibility of different norovirus genotypes was very limited. In

one study, the R0 of GⅡ.6[P7] norovirus was slightly higher than

GⅡ.2[P16] ones, but there was no statistical difference.5 Another

study found no evidence of variation in the estimated R0 value among

norovirus genotypes categorized as GI, GⅡ.4, or non‐GⅡ.4.2 But it did

not offer more information about whether certain dual‐genotypes

were more transmissible. At the beginning of this study, we assumed

that R0 for different genotypes was different, similar to that observed

among SARS‐CoV‐2 variants.18 However, the variation of transmissi-

bility among several genotypes was not that obvious. Maybe the

sample size of these genotype outbreaks observed in this study was

not large enough to observe the differences. We need more data and

continuous research to explore this. Besides, outbreaks of different

attack rate had different transmissibility. High and median attack rate

outbreaks had higher R0 compared with low attack rate ones. This

suggests that the estimated R0 in this study was reliable for it has

good consistency with the attack rate of outbreaks. R0 was also

related with response timeliness. The earlier the response was

initiated, the higher the R0 was. This was mainly attributed to the data

we used. The estimation of R0 required outbreak incidence data

which was not influenced by any human intervention. However, in

real‐world situation, health department would take timely measures

to curb the spread of norovirus in the vast majority of outbreaks.

Hence, only the incidence data before the implementation of

interventions was used to estimate R0. And this part of data just

reflects the upward phase of the epidemiological curve for an

outbreak, which might lead to a higher R0 estimation. This could be a

limitation for our study. Although norovirus outbreaks presented

seasonal patterns and different transmission modes,15,16 the trans-

missibility did not vary by season (or temperature and precipitation)

or transmission mode in this study.

There were several limitations to our study in addition to those

mentioned above. First, we only included norovirus outbreaks with more

than 10 cases, which might have caused selection bias. Second, in the SIR

dynamic model, we assumed homogeneity in susceptibility, contact

pattern, and the ability to infect others in a norovirus outbreak. However,

in a real scenario, an individual might not be genetically susceptible to

norovirus infections,19 and there might be super‐spreaders who can

infect more people. This simplified assumption may not accurately reflect

a real‐world complex situation. Third, the data used to calculate the R0 of

an outbreak were the incidence data of cases before the implementation

of intervention measures, which could not represent the natural and

complete course of outbreaks, as discussed above. Hence, further studies

are needed to improve the accuracy of the surveillance data and further

optimize the estimation.
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In summary, norovirus outbreaks still occur frequently even in

cities with relatively good sanitation conditions like Beijing, indicating

the significant transmissibility of norovirus. Particularly in places

where susceptible individuals gather, such as kindergartens and

primary schools, norovirus spreads more easily and exhibits higher

transmissibility, emphasizing the need for early interventions in these

high‐risk populations and settings. Furthermore, we have noted

difference in R0 in relation to surveillance year and genotype. This

indicates that the transmissibility of norovirus may vary over time and

with virus evolution. Consequently, additional research and evidence

are crucial to reveal the underlying mechanisms, which will contribute

scientific evidence to support the deployment and assessment of

interventions, as well as the advancement of vaccines and

medications.
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Abstract

Mpox outbroke globally during 2022–2023, with more than 90% of cases

occurring in men who have sex with men (MSM). However, the spatiotemporal

distribution of mpox is not well established yet. This study aimed to explore the

spatiotemporal clustering of mpox cases in MSM worldwide. We obtained

the numbers of mpox cases from Our World in Data, the number of MSM from

the Joint United Nations Programme on HIV/AIDS (UNAIDS), UNAIDS DATA

2021 and UNAIDS Global AIDS Update 2022 and literature. We evaluated the

spatiotemporal cluster of mpox in MSM using retrospective space–time analyses

method. The total number of mpox cases was 85 795 during May 1, 2022 to

March 31, 2023. The most likely cluster was Spain (likelihood ratio = 4764.97;

p < 0.001), with a cluster period from July 26 to August 14, 2022. There were 11

secondary clusters, which included 46 countries located in western Europe,

eastern and northern South America, northern Europe, Canada, Central Africa,

southern and central Europe, Latin America, Turkey, Dominican Republic, New

Zealand, and Australia. The findings may inform current and future control

strategies of mpox and might provide references for the identification of the

spatiotemporal distribution of new and emerging infectious diseases in specific

populations.

K E YWORD S

epidemiology, mpox, MSM, spatiotemporal analysis

1 | INTRODUCTION

Mpox (formerly known as monkeypox) is a zoonotic infectious

disease. The virus includes two branches, the Central African branch

and the West African branch. The current epidemic in the non‐

African region was caused by the West African branch, which has an

incubation period of 5–21 days (typically 6–13 days),1 and a mortality

rate of 1.6‰.2,3 The mpox virus can be transmitted through airborne

droplets, direct or indirect contact with lesions or contaminated

objects,4 and vertical transmission.5 Whether it can be sexually

transmitted remains to be validated.4

The number of confirmed and suspected cases of mpox has

increased over the past 50 years (1970–2021) from 47 cases in

1970–1979 to 19 068 cases in 2010–2019.6 Cases were previously

concentrated in Central and West Africa.7 However, recently, some

travel‐associated cases have been reported in Europe, the Americas,

Asia, and Oceania.8 The number of cases in Europe has increased

rapidly since May 2022 after initial mpox cases were reported in the
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United Kingdom.1,9 On July 2022, the WHO declared mpox a public

health emergency of international concern.10 As of April 4, 2023,

there were 86 838 cases and 112 deaths11 in 110 countries and

regions over a period of 11 months, with most cases occurring in

Europe, North America, and South America. Notably, more than 90%

of cases were reported in men who have sex with men (MSM).1

In the field of infectious diseases, spatiotemporal distribution analysis

refers to the statistical analysis used to estimate distribution character-

istics and the change pattern of an infectious disease over time and space.

Due to more frequent risk behaviors such as sexual contact and multiple

sexual partners, MSM are under the increased risk of mpox infection.

Therefore, the spatiotemporal distribution analysis of mpox in MSM is

vital in assessing and monitoring mpox's occurrence, intensity and

direction of transmissibility,12 but few studies estimate the spatiotemporal

distribution in MSM from a global perspective because mpox previously

occurred only in parts of Africa and did not draw considerable attention

from other countries and regions.

In addition, despite the overall declining trend of mpox

prevalence from 2022 to 2023, there still exists small‐scale outbreaks

globally with a slightly increased number of weekly reported new

cases in parts of the world.13 Up to now, some studies were

conducted only based on cases or case series of mpox.4,14,15 For

example, one study analyzed geographical clusters of cumulative

mpox cases and its virus lineages by countries and regions between

September 2018 and August 2022.13 Another study analyzed the

spatial distribution of mpox cases and its changes by months at global

level.16 Mandja et al.12 found spatiotemporal clusters in suspected or

confirmed cases of 292 in the Democratic Republic of the Congo

between 2000 and 2015. However, the above three studies did not

focus on the spatiotemporal distribution of mpox in MSM. Using

national surveillance data to analyze mpox cluster is one of the

alternative methods, we should note that not all countries have

available and high‐quality surveillance data, which limits the descrip-

tion of mpox spatiotemporal cluster among different countries

worldwide.

At present, several methods, including ClusterSeer, GeoSurveil-

lance, kernel density, SanTScan and Flex Scan have been applied to

detect and validate spatiotemporal aggregation of infectious dis-

eases. Among them, SanTScan has a higher sensitivity for aggregate

cluster analysis than others.17,18 Thus, in this study, we adopted

SanTScan to determine whether there is a spatiotemporal cluster of

mpox in MSM among 83 countries. Our study might provide insights

into the spatiotemporal clusters of mpox among different countries

from a global perspective and provide a reference for the develop-

ment of prevention and control strategy in high‐risk populations.

2 | METHODS

2.1 | Data source

We searched Our World in Data19 to obtain the data on daily number

of new cases and cumulative cases of mpox in 83 countries between

May 1, 2022 and March 31, 2023. Our World in Data is an open

global database, which covers most countries and focuses on

poverty, disease, hunger, climate change, war, existential risk and

inequality.19 Data on mpox outbreak are collated from WHO,

updated every hour, and kept up to the previous day. All data are

available on GitHub.19 We used May 1, 2022 as the start time

because the data reported in Our World in Data began on May 1,

2022. We used March 31, 2023 as the end time because the data

were updated to March 31, 2023 when we performed this study.

Data on the longitude and latitude of each country were obtained

from Model Whale (Supporting Information: Table S1).20 MSM data

were collected from the Joint United Nations Programme on HIV/

AIDS (UNAIDS),21 UNAIDS DATA 2021 and UNAIDS Global AIDS

Update 2022, and literature (Supporting Information: Table S2). The

number of MSM in 83 countries was available. In our study, MSM

include the men who have sex with men and women, and the men

who are exclusively gay/same‐sex attracted and only have sex with

other gay men.22

2.2 | Statistical analysis

The daily new cases of mpox in North America, Europe, South

America, Africa, Asia, and Oceania were calculated and presented as

a bar chart. The cumulative confirmed cases and MSM population

were described at country levels.

The retrospective space–time analysis method based on

discrete Poisson model was used to identify the potential

spatiotemporal cluster of mpox in MSM.23,24 In this analysis, to

evaluate the change in a number of cases inside and outside the

window, a scanning window was constructed in the form of a

cylinder, whose height represents time and base area represents

region. The position of scanning center was selected randomly.

The height and base area were constantly changing until all the

space units were scanned.25 We calculated the percentage of

mpox cases in MSM population in each country and found that

3.3% was the highest prevalence rate among 83 countries. Thus,

we set 3.3% as the upper limit of geographic size in the scanning

window to ensure that at least one spatiotemporal cluster could be

detected among 83 countries. To detect the clusters of mpox at

different incubation periods, we set the time length of scanning

window for 7, 14, and 21 days, respectively, according to the

shortest, median, and longest incubation periods of mpox. Log‐

likelihood ratio (LLR) was calculated using the observed and

theoretical number of cases inside and outside the window. The

largest LLR value indicated the most likely cluster area. Addition-

ally, other windows with statistical significance of LLR indicated

secondary clusters. The Monte Carlo approach was used to test

the statistical significance of the LLR. Relative risk (RR) was

calculated to evaluate the strength of aggregation.26 The p value of

less than 0.05 indicated statistical significance. The details

regarding the hypothesis test and the calculation of LLR and RR

were listed below.
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Null hypothesis (H0): The spatial and temporal distribution of

mpox in MSM is random;

Alternative hypothesis (H1): The spatial and temporal distribution

of mpox in MSM is not random.

E c
C

P
p( ) = × ,

where c is the observed number of cases and p is the number of MSM

population in the region within the window, while C and P are the

total number of mpox cases and MSM population respectively. E[c] is

the theoretical number of cases within the window under the null‐

hypothesis. LLR and RR were calculated as below:















c

E c

C c

C E c
LLR =

[ ]

−

− [ ]

c C c−

RR
c E c

C c C E c
=

/ [ ]

( − )/( − [ ])
.

Microsoft Excel was used to collate the data. Line graphs were

plotted to show the changes in the daily numbers of cases in six

continents. SaTScan (version 10.1; developed by Kulldorff; https://

www.satscan.org/) was used to analyze the spatiotemporal clusters

of mpox cases in MSM. ArcGIS (version 9.4) was used to visualize the

results.

2.3 | Ethical approval

Ethical approval is not required for this study, given that the study

does not involve direct data collection from people.

3 | RESULTS

3.1 | Prevalence of mpox

The total number of mpox cases in the 83 countries was 85 795

between May 1, 2022 and March 31, 2023, and the total estimated

number of MSM population was 28 625546. The United States had the

highest number of cases (30 079) between June 3, 2022 and March 31,

2023. The estimated number of MSM in the United States was

4 604040 during the same period. The second and third total numbers

of cases in Brazil and Spain were 10 890 and 7546, and the estimated

numbers of MSM were 2 000000 and 890200, respectively. The top

five countries with the highest incidence rate of mpox were Luxembourg

(3259.01 per 100 000 MSM population), Costa Rica (2148.51 per

100000 MSM population), Peru (1455.77 per 100 000 MSM popula-

tion), France (1250.91 per 100000 MSM population), and Chile

(1168.29 per 100000 MSM population) (Table 1).

Figure 1 presented the number of daily cases and changing trend

of mpox in six continents. Five continents including North America,

Europe, South America, Africa, and Oceania had a similar trend that

showed an increase followed by a decrease in the number of daily

cases, with one peak observed during the period. However, despite a

small number of daily cases in Asia, there was a remarkably increased

trend of daily cases after mid‐March 2023.

3.2 | Spatiotemporal cluster of mpox in MSM

To detect the clusters of mpox at different incubation periods, we set

the time length of scanning window for 7, 14, and 21 days,

respectively, according to the shortest, median, and longest incuba-

tion periods of mpox.

When the temporal window was set at 7 days, we identified one

most likely spatiotemporal cluster and 15 secondary clusters, which

covered a total of 47 countries. The most likely spatiotemporal

cluster was Spain (LLR = 2834.13, p < 0.001, cluster period: July

5–10, 2022). The first secondary cluster was France (LLR = 2282.69,

p < 0.001, cluster time: July 21, 2022), the second secondary cluster

was Ecuador, Colombia and Peru (LLR = 1697.58, p < 0.001, cluster

time: October 12, 2022), and the third secondary cluster was Ireland,

the UK and Netherlands (LLR = 1234.23, p < 0.001, cluster period:

July 18–19, 2022). The other secondary clusters are shown in

Figure 2A and Supporting Information: Table S3.

When the temporal window was set at 14 days and 21 days, we

found a similar result. There was one most likely spatiotemporal cluster

and 11 secondary clusters, which also covered 47 countries. The most

likely cluster was Spain (14 days: LLR = 4008.34, p < 0.001, cluster

period: July 5–18, 2022; 21 days: LLR = 4764.97, p < 0.001 cluster

period: July 26 to August 14, 2022). The first secondary cluster was

France, Switzerland, Luxembourg, Belgium and Netherlands (14 days:

LLR = 3263.26, p < 0.001, cluster period: July 21 to August 2, 2022; 21

days: LLR = 4244.08, p < 0.001, cluster period: July 19 to August 8,

2022); the second secondary cluster was in Peru, Ecuador, Bolivia and

Colombia (14 days: LLR = 2671.25, p < 0.001, cluster period: September

20–28, 2022; 21 days: LLR = 3641.44, p < 0.001, cluster period:

September 20 to October 5, 2022), and the third secondary cluster

was Norway, Denmark, Sweden and the UK (14 days: LLR = 1324.69,

p < 0.001, cluster period: July 6–19, 2022; 21 days: LLR = 1636.05,

p < 0.001, cluster period: July 18 to August 2, 2022). The other

secondary clusters were shown in Figure 2B,C, Supporting Information:

Tables S4 and Table S5.

Figure 3 presented the RR values for spatiotemporal clusters across

different temporal windows. When the temporal window was set at 7

days, we observed one largest RR value in the second secondary cluster

including France (RR= 184.40, p<0.001). The second largest RR value

was in the twelfth secondary cluster including Turkey (RR= 178.47,

p< 0.001), and the third largest RR value was in the third secondary

cluster including Ecuador, Colombia, Peru (RR =79.73, p<0.001)

(Supporting Information: Table S3 and Figure 3A).

Notably, when the temporal window was set at 14 days and 21

days, we found a similar result. The values of top two RR were same,

and the largest RR value was in the eighth secondary cluster,

including Turkey (RR = 178.47, p < 0.001), and the second largest RR

value was in 10th secondary cluster including New Zealand (RR =
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TABLE 1 Cumulative cases of mpox and number of the MSM in 83 countries from May 1, 2022 to March 31, 2023.

Country Period
Cumulative
mpox cases MSM population

Incidence of mpox
per 100 000

Argentina 2022/6/3–2023/3/31 1124 205 600 546.69

Australia 2022/5/20–2022/12/9 144 263 500 54.65

Bahamas 2022/6/27–2023/3/31 2 2800 71.43

Barbados 2022/7/19–2023/3/31 1 2600 38.46

Belgium 2022/5/19–2023/3/28 793 144 753 547.83

Benin 2022/6/24–2023/3/24 3 5800 51.72

Bolivia 2022/8/3–2023/3/31 265 35 500 746.48

Bosnia and Herzegovina 2022/7/14–2023/3/28 9 6900 130.43

Brazil 2022/6/10–2023/3/31 10 890 2 000 000 544.50

Bulgaria 2022/6/23–2023/3/28 6 57 800 10.38

Cameroon 2022/5/1–2023/3/24 14 7000 200.00

Canada 2022/6/3–2023/3/31 1478 349 800 422.53

Central African Republic 2022/5/1–2023/3/24 23 3000 766.67

Chile 2022/6/18–2023/3/31 1437 123 000 1168.29

China 2022/6/24–2023/3/28 24 8 288 536 0.29

Colombia 2022/6/25–2023/3/31 4089 357 000 1145.38

Republic of Congo 2022/5/1–2023/3/24 3 1300 230.77

Costa Rica 2022/7/21–2023/3/31 217 10 100 2148.51

Croatia 2022/6/24–2023/3/28 33 29 500 111.86

Cuba 2022/8/23–2023/3/31 8 279 200 2.87

Czech Republic 2022/5/24–2023/3/28 71 109 644 64.76

Democratic Republic of the Congo 2022/5/20–2023/3/24 439 194 900 225.24

Denmark 2022/5/23–2023/3/28 196 50 000 392.00

Dominican Republic 2022/7/7–2023/3/31 52 142 000 36.62

Ecuador 2022/7/6–2023/3/31 530 89 400 592.84

Egypt 2022/9/27–2022/12/12 3 64 300 4.67

El Salvador 2022/9/1–2023/3/31 98 54 100 181.15

Estonia 2022/6/28–2023/3/28 11 9000 122.22

France 2022/5/19–2023/3/28 4128 330 000 1250.91

Georgia 2022/6/15–2023/3/28 2 19 000 10.53

Germany 2022/5/20–2023/3/28 3692 750 000 492.27

Ghana 2022/5/1–2023/3/24 122 54 800 222.63

Greece 2022/6/9–2023/3/28 87 94 000 92.55

Guatemala 2022/8/4–2023/3/31 404 116 500 346.78

Guyana 2022/8/24–2023/3/31 2 3300 60.61

Honduras 2022/8/14–2023/3/31 40 40 900 97.80

Hungary 2022/5/31–2023/3/28 80 53 404 149.80

India 2022/7/14–2023/3/25 22 238 200 9.24
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TABLE 1 (Continued)

Country Period
Cumulative
mpox cases MSM population

Incidence of mpox
per 100 000

Indonesia 2022/8/22–2023/3/25 1 754 300 0.13

Iran 2022/8/18 1 359 000 0.28

Ireland 2022/5/16–2023/3/28 228 86 500 263.58

Italy 2022/5/19–2023/3/28 957 359 315 266.34

Jamaica 2022/7/8–2023/3/31 21 42 400 49.53

Japan 2022/5/1–2023/3/30 82 700 000 11.71

Latvia 2022/6/3–2023/3/28 6 12 880 46.58

Lebanon 2022/6/20–2023/3/9 27 17 000 158.82

Liberia 2022/7/29–2023/3/24 10 74 600 13.40

Lithuania 2022/8/4–2023/3/28 5 17 760 28.15

Luxembourg 2022/6/16–2023/3/28 57 1749 3259.01

Mexico 2022/6/3–2023/3/31 3937 1 226 000 321.13

Moldova 2022/8/9–2023/3/28 2 14 600 13.70

Morocco 2022/6/2–2022/8/29 3 42 000 7.14

Mozambique 2022/10/7–2023/3/24 1 15 800 6.33

Netherlands 2022/5/22–2023/3/28 1262 230 000 548.70

New Zealand 2022/7/11–2023/1/22 41 37 500 109.33

Nigeria 2022/5/1–2023/3/24 814 240 000 339.17

Norway 2022/5/31–2023/3/28 95 56 459 168.26

Panama 2022/7/6–2023/3/31 189 30 000 630.00

Paraguay 2022/8/26–2023/3/31 119 32 200 369.57

Peru 2022/6/28–2023/3/31 3785 260 000 1455.77

Philippines 2022/7/29–2022/8/22 4 687 100 0.58

Poland 2022/6/13–2023/3/28 215 67 482 318.60

Portugal 2022/5/17–2023/3/28 951 103 153 921.93

Romania 2022/6/14–2023/3/28 47 10 500 447.62

Russia 2022/7/12–2023/3/28 2 243 384 0.82

Serbia 2022/6/17–2023/3/28 40 40 000 100.00

Singapore 2022/6/21–2023/3/30 22 220 000 10.00

Slovakia 2022/7/7–2023/3/28 14 18 614 75.21

Slovenia 2022/5/24–2023/3/28 47 39 427 119.21

South Africa 2022/7/1–2023/3/24 5 310 000 1.61

Spain 2022/5/18–2023/3/28 7546 890 200 847.67

Sri Lanka 2022/11/4–2023/3/25 2 74 000 2.70

Sudan 2022/8/1–2022/10/19 18 132 000 13.64

Sweden 2022/5/18–2023/3/28 260 100 000 260.00

Switzerland 2022/5/21–2023/3/28 552 80 000 690.00

Thailand 2022/7/21–2023/3/25 18 527 900 3.41

(Continues)
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35.77, p < 0.001). The third largest RR value was in fourth secondary

cluster at 14 days and fifth secondary cluster at 21 days including

Liberia, Ghana, Benin, Nigeria, Cameroon, Morocco, Republic of

Congo, Central African Republic, Democratic Republic of the Congo,

and Portugal (RR = 26.51, p < 0.001) (Supporting Information:

Tables S4, S5, and Figure 3B,C). RR corresponding to each country

in the spatiotemporal cluster of mpox from May 1, 2022 to March 31,

2023 were shown in Supporting Information: Table S6.

4 | DISCUSSIONS

We analyzed the prevalence and the clusters of mpox cases in MSM

using a retrospective spatiotemporal model and a geographic

information system. A total of 85 795 mpox cases were reported in

83 countries between May 1, 2022 and March 31, 2023. We

discovered 12 spatiotemporal clusters of mpox cases in MSM

covering 47 countries. The most likely cluster was Spain, and the

other 11 secondary clusters located in western Europe, eastern and

northern South America, northern Europe, Canada, Central Africa,

Southern and central Europe, Latin America, Turkey, Dominican

Republic, New Zealand and Australia. To the best of our knowledge,

this is the first study to explore the cluster of mpox cases in MSM.

The findings of the present study may improve the understanding of

the global spatiotemporal epidemiology of mpox in MSM.

We observed that mpox cases were clustered in MSM. Most

mpox outbreaks in western and southern European countries, such as

Spain, Portugal, Italy and the UK, were initially reported in MSM

population,1,9,27 and the outbreaks in countries located in North

America, Latin America, and Oceania, such as Canada, and Australia,

TABLE 1 (Continued)

Country Period
Cumulative
mpox cases MSM population

Incidence of mpox
per 100 000

Turkey 2022/6/30–2023/3/28 12 6890 174.17

Ukraine 2022/9/15–2023/3/28 5 180 000 2.78

The United Kingdom 2022/5/7–2023/3/28 3738 598 256 624.82

The United States 2022/6/3–2023/3/31 30 079 4 604 040 653.32

Uruguay 2022/7/31–2023/3/31 19 28 600 66.43

Venezuela 2022/6/15–2023/3/31 12 210 800 5.69

Vietnam 2022/10/3–2022/10/19 2 256 000 0.78

Total 2022/5/1–2023/3/31 85 795 28 625 546 299.71

Abbreviations: mpox, monkeypox; MSM, men who have sex with men.

F IGURE 1 The number of daily cases of mpox in six continents between May 1, 2022 and March 31, 2023. mpox, monkeypox.
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F IGURE 2 Spatiotemporal clusters of mpox in MSM population in 83 countries from May 1, 2022 to March 31, 2023. (A) Spatiotemporal
clusters of mpox in 7 days; (B) spatiotemporal clusters of mpox in 14 days; and (C) spatiotemporal clusters of mpox in 21 days. mpox,
monkeypox.
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F IGURE 3 Relative risk of spatiotemporal clusters of mpox in MSM population from May 1, 2022 to March 31, 2023 in 83 countries. (A)
Relative risk of spatiotemporal clusters of mpox in 7 days; (B) relative risk of spatiotemporal clusters of mpox in 14 days; (C) relative risk of
spatiotemporal clusters of mpox in 21 days. mpox, monkeypox; RR, relative risk.
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also disproportionately affected MSM.8,28 The early transmission of

the mpox virus in cases demonstrates a high correlation in sexual

networks within the male population,29 and more than 90% of

reported cases are MSM.2 Previous studies showed that the R0 of

mpox is 2.43 in MSM.30 Owing to the transmission of skin‐to‐skin

contact, the clustered spread of mpox in MSM can be caused by risk

behaviors, such as condomless penile–anal intercourse, multiple

sexual partners, and sexual encounters in bars, clubs, and other

parties.31,32 The infected individuals will increase the spread of mpox

through sexual contact behavior with his sexual partners. If a gay man

has many sexual partners, a clustered outbreak of mpox may happen

among MSM. Countries with cultural tolerance of homosexuality are

more likely to have a significant increase in mpox cases in gay

communities in a short time.33 In contrast, in homosexuality‐

prohibiting countries,34 a gay man has to marry a woman and have

sexual contact simultaneously with his wife and male sexual partner.

Once the gay man infected mpox, the risk of clustering in the family

and sexual networks increase. However, Africa countries have a

lower level of medical care, and their healthcare workers lack

knowledge of managing the sexual health needs of MSM popula-

tion,35 detection technology, diagnostic skills and treatment capacity

comparing to developed countries. Even in the UK, a developed

country, some cases were misdiagnosed as infections caused by the

herpes simplex virus or varicella‐zoster virus due to the same clinical

manifestations of mpox and sexually transmitted diseases.36 Thus,

the undiagnosed cases, delayed diagnosis, and insufficient treatment

in MSM can lead to the outbreak and even the epidemic of mpox.

Although mpox is a self‐limiting disease, with a low rate of

associated mortality, patients with this disease are vulnerable to social

stigma.37 Smallpox vaccines can be used to control mpox outbreaks,

whereas the first‐generation smallpox vaccines in national reserves are

not recommend as they do not meet the current safety and

manufacturing standards. The second‐generation vaccine, ACAM2000,

had limited safety data from large population‐based program and was

associated with rare but serious adverse event, such as myopericarditis.38

JYNNEOS is a third‐generation vaccine, which was authorized to

manufacture by the US FDA on 24 September 2019.39 Since August

9, 2022, under an Emergency Use Authorization by FDA, the standard

regimen has been authorized for people aged <18 years, and an

alternative regimen used for people age ≥18 years.40 The JYNNEOS

vaccine can reduce the risk of mpox infection and the incidence of

severe illness, with fewer adverse events occurring.41 However, this

vaccine is only available in parts of countries. In addition to vaccination,

other specifically clinical treatment for mpox is still under development.2

Moreover, some strategies target on mpox prevention can also reduce

the risk of mpox infection, including restricted number of sexual partners,

reduction in sexual acts frequency, avoidance of sexual intercourse with

temporary partners from dating apps or sex venues, adoption of

condoms and disinfection measures.31,42 A study showed that more than

55% of MSM and transgender women adopted these strategies.31

The most likely spatiotemporal cluster of mpox in MSM was in

Spain, and two possible reasons could explain the phenomenon. First,

a celebration, Gay Pride Maspalomas festival, held in Gran Canaria

during May 5–15, 2022 might be the origin of the outbreak of mpox.

Around 30 000 overseas visitors, who were lesbian, gay, bisexual, and

transgender (LGBT), attended this gathering and some of them had high

number of sexual partners during their stay.43 After 2 days (May 17,

2022), seven mpox cases were first observed in a sexually transmitted

disease clinic in Madrid of Spain, and all cases have no identified

epidemiological links to mpox cases in other countries.32 It was 30 days

later (June 22, 2022) that 508 confirmed cases occurred in Madrid and

almost of them are MSM. Some of cases attended the Gay Pride

Maspalomas festival or attended a same sauna and were exposed to

condomless sex with unknown partners.32 In terms of time, the mass

outbreak of cases coincided with the longest incubation period of mpox.

Epidemiological links between cases may accelerate the outbreak of

mpox in MSM in Spain. Second, an inclusive social environment may

facilitate the sustainable spread of mpox among MSM populations. The

marriage of people between same sex was legalized in Spain since 2005,

and more than 80% Spanish show an acceptable attitude toward

homosexuality.44 Notably, Madrid is a tolerant LGBT city, with a vibrant

gay and other men who have sex with men community.33 All above

factors could be potential important reasons for the outbreak and

prevalence of mpox in MSM in Spain. In addition, MSM population have

access to public health services, such as sexual health test, by the way of

privacy and free of charge in Spain.45 This might be helpful for MSM to

detect mpox virus in the early period.

Spatiotemporal aggregation of mpox in MSM populations

obtained using space‐time statistical model provided additional

epidemiological information of the disease. Identifying the areas

with high spatiotemporal aggregation of cases and understanding

cluster situation may improve in public health control measures.

Retrospective scan statistics has been recognized as one of the most

comprehensive methods to evaluate the spatial and temporal

distribution of infectious diseases, such as tuberculosis, Malaria,

Covid‐19, and so forth.17,26,46 Previous studies showed that this

method have higher sensitivity to detect true infectious disease

(Malaria) clusters compared with other methods.17

The cases of mpox are currently low in many countries and

regions, however, those countries have high numbers of MSM, which

may increase the likelihood of transmission. Therefore, in countries

where mpox is endemic, proactive measures such as the screening of

high‐risk populations and timely detection of confirmed cases are

required to control the viral transmission.

Our study has several limitations. First, data on the MSM

populations of the included countries were obtained from multiple

sources and corresponded to different years, thus the possibility of

the overestimation or underestimation of the risk of clustering cannot

be ignored. Second, for cluster analysis, we collected data from Our

World in Data. The data did not include the number of confirmed

mpox cases in MSM. Studies have indicated that approximately 98%

of all confirmed cases of mpox were reported in MSM.4,9 Thus, the

spatiotemporal cluster results obtained using the data regarding the

total number of confirmed cases might have been overestimated.

Third, the extrapolation of this study should be cautious because the

countries included this study cannot represent all countries in global.
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Fourth, scan statistics method is limited by the circular search

window and may not capture irregularly or noncircular clusters.

Besides, its sensitivity may be affected by the choice of scan window

size and the significance level used for cluster detection.

In conclusion, 12 spatiotemporal clusters of mpox cases were

found in MSM population and the most likely cluster was in Spain, the

secondary clusters were in western Europe, eastern and northern

South America, northern Europe, Canada, Central Africa, Southern

and central Europe, Latin America, Turkey, Dominican Republic, New

Zealand and Australia. The study might inform current and future

control strategies of mpox, and enhance the identification of the

spatiotemporal distribution of new and emerging infectious diseases

in specific population.
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